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1. (a) The point (~1,-2) is on the graph of f , so f(-1)=-2 .

(b) When x=2 , y is about 2.8 , so f(2)~2.8 .

(¢) f(x)=2 is equivalent to y=2 . When y=2 , we have x=-3 and x=1 .

(d) Reasonable estimates for x when y=0 are x=-2.5 and x=0.3 .

(e) The domain of f consists of all x —values on the graph of f . For this function, the domain is
-3<x<3,o0r[-3,3] . The range of f consists of all y ~values on the graph of f . For this function,
the range is 2< y<3,or [-2,3] .

(f) As x increases from —1 to 3 , y increases from -2 to 3 . Thus, f is increasing on the interval [-1,3]

2. (a) The point (-4,-2) is on the graph of f , so f(-4)=-2 . The point (3,4) is on the graph of g , so
g(3)=4.

(b) We are looking for the values of x for which the y —values are equal. The y —values for f and g
are equal at the points (-2,1) and (2,2) , so the desired values of x are -2 and 2 .

(¢) f(x)=-1isequivalent to y=-1. When y=-1, we have x=-3 and x=4 .

(d) As x increases from 0 to 4 , y decreases from 3 to —1 . Thus, f is decreasing on the interval [0,4]

(e) The domain of f consists of all x —values on the graph of f . For this function, the domain is
-4< x<4 ,or [-4,4] . The range of f consists of all y ~values on the graph of f . For this function,
the range is 2< y<3,or [-2,3] .

(f) The domain of g is [-4,3] and the range is [0.5.,4] .

3. From Figure 1 in the text, the lowest point occurs at about (z,a)=(12,-85) . The highest point
occurs at about (17,115) . Thus, the range of the vertical ground acceleration is -85<a< 115 . In
Figure 11, the range of the north-south acceleration is approximately -325< a< 485 . In Figure 12,
the range of the east-west acceleration is approximately -210< a< 200 .

4. Example 1: A car is driven at 60 mi / h for 2 hours. The distance d traveled by the car is a function
of the time 7 . The domain of the function is {#|0<¢<2} , where 7 is measured in hours. The range of
the function is {d10< d< 120} , where d is measured in miles.

miles

120

0} 2 timein
hours
Example 2: At a certain university, the number of students N on campus at any time on a particular
day is a function of the time ¢ after midnight. The domain of the function is {#10<7<24} , where 7 is
measured in hours. The range of the function is { NI0< N<k} , where N is an integer and k is the

largest number of students on campus at once.
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Example 3: A certain employee is paid $8.00 per hour and works a maximum of 30 hours per week.
The number of hours worked is rounded down to the nearest quarter of an hour. This employee’s
gross weekly pay P is a function of the number of hours worked % . The domain of the function is
[0,30] and the range of the function is {0,2.00,4.00,...,238.00,240.00} .

Number
of students

pay
240 .
2381 *~——0
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5. No, the curve is not the graph of a function because a vertical line intersects the curve more than
once. Hence, the curve fails the Vertical Line Test.

6. Yes, the curve is the graph of a function because it passes the Vertical Line Test. The domain is
[-2,2] and the range is [-1,2] .

7. Yes, the curve is the graph of a function because it passes the Vertical Line Test. The domain is
[-3,2] and the range is [-3,-2)U[-1,3] .

8. No, the curve is not the graph of a function since for x=0, +1 , and +2 , there are infinitely many
points on the curve.

9. The person’s weight increased to about 160 pounds at age 20 and stayed fairly steady for 10 years.
The person’s weight dropped to about 120 pounds for the next 5 years, then increased rapidly to
about 170 pounds. The next 30 years saw a gradual increase to 190 pounds. Possible reasons for the
drop in weight at 30 years of age: diet, exercise, health problems.

10. The salesman travels away from home from 8 to 9 A.M. and is then stationary until 10 : 00 . The
salesman travels farther away from 10 until noon. There is no change in his distance from home until
1 : 00, at which time the distance from home decreases until 3 : 00 . Then the distance starts
increasing again, reaching the maximum distance away from home at 5 : 00 . There is no change from
5 until 6 , and then the distance decreases rapidly until 7 : 00 P.M., at which time the salesman
reaches home.

11. The water will cool down almost to freezing as the ice melts. Then, when the ice has melted, the
water will slowly warm up to room temperature.
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12. The summer solstice (the longest day of the year) is around June 21, and the winter solstice (the

shortest day) is around December 22.

Hours of
daylight

| June 21 Dec. 22 ¢

13. Of course, this graph depends strongly on the geographical location!
T

midnight noon t

14. The temperature of the pie would increase rapidly, level off to oven temperature, decrease rapidly,

and then level off to room temperature.
T

t

Height
of grass

"c 3 Wed Wed ch 4

x(2)

400 /

16.(a) | 60 1

W0

35,000
feet m

(b) | 30 60 1
(c)
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17. (a)

(b) From the graph, we estimate the number of cell-phone subscribers in Malaysia to be about 540 in

2500 T
20001
1500+
1000 1

500§

0 1991 1993 1995 1997 ¢
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].8. (a) midnight noon
(b) From the graph in part (a), we estimate the temperature at 11:00 A.M. to be about 84.5 °C.

19. Fr)=3xx+2.
F(2)=3(2)"-242=12-242=12.
F2)=3(-2) (-2)+2=12+2+2=16.
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f (a)=3a27a+2.
FCa)=3(-a) —(-a)+2=3a +a+2.
Fla+1)=3(a+1) —(a+1)42=3(a +2a+1)-a- 142230 +6a+3-a+1=3a +5a+4.
2f(a)=2- f(@)=2(3d -a+2)=6a"2a+4.
F(2a)=3(2a) —(2a)+2=3(4a")-2a+2=12d"2a+2.
F(@)=3ay (a)+2=3(a)-a +2=3a —a +2.

[ f(a)] 2 =[ 3f2—a+2] 22=( 3?2—§1+2) (3;12—a+2) . s ,

=9a —3a +6a —3a +a —2a+6a —2a+4=9a —6a +13a —4a+4.

F(a+h)=3(a+h) —(a+h)+2=3(d +2ah+h’)-a-h+2=3a +6ah+3h —ah+2.

4 3 4 3 2
20. A spherical balloon with radius r+1 has volume V (r+1)= 37 (r+1) = 37 (r +3r +3r+1) . We

wish to find the amount of air needed to inflate the balloon from a radius of r to r+1 . Hence, we need
to find the difference V (r+1)-V (r)= g 7 (r3+3r2+3r+1)— % r= % 7 (3r2+3r+1) :

2. F)=rx , 50 fQA)=24h-(24h) =24h-(A+dhthD)=2+h-4-4h-h = (W+3h+2) |

FOerh)y=x+h (x+h) “=xth-(C 42kl )=x+h-x2xh-h", and
Fath) f()  x+h X’ 2xh b x+x’  h2xh k. h(1-2x h)

A 2 7 7 =1-2x-h.
X 2+h 2+h x+h
2. f(x0)= x+1 50 f(2+h)= 2+h+l ~ 3+h > Jth)= x+h+1 "’ and
x+h X
SO+ f(x)  xthtl  x+l (x+h) (x+]) x (x+ht]) 1
h a h  h(x+h+1) (x+1) T (x+h+1) (x+1)

1
23. f(x)=x/(3x-1) is defined for all x except when 0=3x-1 & x= 3 , S0 the domain is
s 3} (o4)o (1)
X€ x;é3 = 00,3 3,oo .

2 2
24. f (x)=(5x+4)/ (x +3x+2) is defined for all x except when O=x +3x+2< 0=(x+2)(x+1)x=-2 or
-1, so the domain is {x€ Rlx#-2,~1}=(-00,-2)U(-2,-1)U(-1,00) .

25.
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f (t)=\l; +3 t is defined when 1> 0 . These values of ¢ give real number results for \I; , whereas any

value of ¢ gives a real number result for é\ﬁ . The domain is [0,00) .

26. g(u)=ﬁ +y4-u is defined when >0 and 4-u> 0 < u<4 . Thus, the domain is 0< u< 4=[0,4] .

4 , 2 2 2
27. h(x)=1/ x —5x is defined when x —5x>0 < x(x—5)>0 . Note that x —5x7 0 since that would
result in division by zero. The expression x(x-5) is positive if x<0 or x>5 . (See Appendix A for
methods for solving inequalities.) Thus, the domain is (-0 ,0)U(5,00) .

2 2 2 2 2 2
28. h(x)=\{4-x .Nowy=\4x =y =4-x ©x +y =4, so the graph is the top half of a circle of

2 2
radius 2 with center at the origin. The domain is { xl4-x> O} = { x14> x } ={xI12>|x|}=[-2,2].
From the graph, the range is 0< y<2, or [0,2] .

N

-2 0{ 2 x

29. f(x)=5 is defined for all real numbers, so the domain is R , or (00 ,00) . The graph of f is a
horizontal line with y —intercept 5 .

5 y=35

1
30. F(x)= 5 (x+3) is defined for all real numbers, so the domain is R , or (-o0,00) . The graph of F is

a line with x —intercept -3 and y —intercept = .

2
3

3 0 X

2
31. f(¢t)=t —6¢ is defined for all real numbers, so the domain is R , or (-0o0,00) . The graph of f is a
2
parabola opening upward since the coefficient of # 1is positive. To find the ¢ —intercepts, let y=0 and

2
solve for ¢ . 0=t —6¢=t(t-6) = =0 and t=6 . The ¢t —coordinate of the vertex is halfway between the ¢ -
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2
intercepts, that is, at t=3 . Since f(3)=3 —6-3=-9, the vertex is (3,-9) .
y

/

0 6 1

4’ e
2t 2+t
the same as the graph of the function f(z)=r+2 (a line) except for the hole at (2,4) .

/4)
2

/_2 0 t

33. g(x)=\l x-5 is defined when x-5> 0 or x> 5 , so the domain is [5,00) . Since y=\l x-5=
2 2
y =x-5= x=y +5, we see that g is the top half of a parabola.

L~

32. H(t)= , so for r#2 , H(t)=2+t . The domain is {¢lt£2} . So the graph of H is

0[ 5 x
34,
~ f 2x+l if 2x+1>0

F(x)=]2x+1] _{ ~(2x+1) if 2x+1<1
1

oo 1
o oxel x=3

-1 2x-1 " <ﬁ1

1I X )

The domainis R, or (—00,00) .

¥

/

35.
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3x+| x|

G(x)=

. Since | x| ={

Note that G is not defined for x=0 . The domain is (—oc0,0)U(0,00) .

36. g(x)=

y =

!
X
N

| x|

2

X

Y

N

. Since |x|= {

1
<
-
K

Note that g is not defined for x=0 . The domain is (—oc0,0)U(0,00) .

o]

37. f(x)= {

Domainis R , or (—0c0,0) .

¥

/

0

X

3x+x

X
3x—x

X

g(x)=

if x<0
if x>0

X

if x>0
if x<0

if x>0

if x<0

if x>0
if x<0

X
2

X

, we have

A
X
2x

, we have

if x>0

if x<0

Ll

|

if x>0

if x<0

4
2

if x>0
if x<0
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_ 2x+3 if x<-1
38.f(x)—{ 3x if x>-1

Domainis R , or (—0c0,0) .

y

N

AN
AN

X+2 if x<-1
91 (x)={ 2 if x> 1

2
Note that for x=-1 , both x4+2 and x are equal to 1. Domain is R .

o

-1 |0 x

-1 if x<-1
40. f(x)= 3x+2 if —I<x<l1
7-2x if x>1

Domainis R .

¥
(1.5)

—_—d o X
(=1, 1)

Yy

41. Recall that the slope m of a line between the two points (x Y 1) and (xz,y2> 1s m= and an

X X
271

equation of the line connecting those two points is y-y 1=m(x—x 1) . The slope of this line segment is
—6-1
4-(-2)

7 7 7 4
=% SO an equation is y-1=- 6 (x+2) . The function is f(x)=- 6 X 3 2<x<4.

5 5
42. The slope of this line segment is =5 »soan equation is y+2= 9 (x43) . The function is

5 1
f(x)= 5 X— 3 -3<x<6.

43. We need to solve the given equation for y .
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2 2
x+(y-1) =0& (y-1) =x& y-1=*y-x & y=14+—x . The expression with the positive radical
represents the top half of the parabola, and the one with the negative radical represents the bottom
half. Hence, we want f (x)=1—\l—_x . Note that the domain is x<0 .

2 2 2 2 ’ 2
44. (x-1) +y =1& y=i'\l 1-(x1) =i\l2xx . The top half is given by the function f(x)=\2xx
0<x<2.

45. For -1<x< 2, the graph is the line with slope 1 and y- intercept 1 , that is, the line y=x+1 . For

3 3 3
2<x< 4, the graph is the line with slope — = and x- intercept 4 , so y-0=- 5 (x-4)= = x+6 . So the

> 2
x+1 if 1<x<2
function is f(x)= - g x+6 if 2<x< 4

46. For x< 0, the graph is the line y=2 . For 0<x< 1, the graph is the line with slope -2 and y-
intercept 2 , that is, the line y=-2x+2 . For x>1 , the graph is the line with slope 1 and x- intercept 1,
2 if x<0
that is, the line y=1(x—1)=x-1 . So the function is f(x)= 2x+2 if 0<x<1
x-1 if I<x

47. Let the length and width of the rectangle be L and W . Then the perimeter is 2L+2W =20 and the
20-2L

area is A=LW . Solving the first equation for W in terms of L gives W= — =10-L . Thus,

2
A(L)=L(10-L)=10L-L . Since lengths are positive, the domain of A is 0<L<10 . If we further restrict
L to be larger than W , then 5<L<10 would be the domain.

48. Let the length and width of the rectangle be L and W . Then the area is LW=16 , so that W=16/L .
The perimeter is P=2L+2W , so P(L)=2L+2(16/L)=2L+32/L , and the domain of P is L>0 , since
lengths must be positive quantities. If we further restrict L to be larger than W , then L>4 would be
the domain.

49. Let the length of a side of the equilateral triangle be x . Then by the Pythagorean Theorem, the
2 /1 \? 2 2 21 2 32 3
height y of the triangle satisfies y +( 5 x) =x ,sothaty =x - 1X=217 and y= 32[ x . Using the

1 1 3 3 2
formula for the area A of a triangle, A= > (base) (height) , we obtain A(x)= 5 (x) < 32E x> = IE X,

with domain x>0 .

3
50. Let the volume of the cube be V and the length of an edge be L . Then V=L so L=§\I7 , and the
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2 2
surface area is S (V)=6(§\IV ) =6V /3 , with domain V>0 .

51. Let each side of the base of the box have length x , and let the height of the box be % . Since the
volume is 2 , we know that 2=hx2 , SO that h=2/x2 , and the surface area is S=x2+4xh . Thus,

2 2. 2
S(x)=x +4x(2/x )=x +(8/x) , with domain x>0 .

2

1 1 2
52. The area of the window is A=xh+ 5 T ( 5 x> =xh+ 7% , where £ is the height of the

1 1
rectangular portion of the window. The perimeter is P=2h+x+ > mx=302h=30-x- 5 TXE

1
h=Z (60-2x-—x) . Thus,

A(x)=x + =15x—zx-——x+7x=15x7-x -7 x=15xx 3

60-2x—mx 7rx2 1 27 2 71 2 4 2 1 2 2 m+4
4 8 2 4 8 8 8

Since the lengths x and & must be positive quantities, we have x>0 and />0 . For #>0 , we have 2/>0

1
E30-x = x>0 60>2x+TxE X< ﬂ . Hence, the domain of A is O<x< ﬂ .
2 2+ 2+

53. The height of the box is x and the length and width are L=20-2x , W=12-2x . Then V=LWx and
SO

2 3 2
V(x)=(20-2x) (12-2x)(x)=4(10-x)(6-x)(x)=4x (60fl6x+x )=4x ~64x +240x .
The sides L , W , and x must be positive. Thus, L>0<20-2x>0<x<10 ; W>0412-2x>04x<6 ; and

x>0 . Combining these restrictions gives us the domain 0<x<6 .
54.

( $2.00 if 0.0<x< 1.0
220 if 1.0<x<1.1
240 if 1.1<x<1.2
2.60 if 1.2<x<1.3
2.80 if 1.3<x<1.4
C(x)={ 3.00 if 1.4<x<15
320 if 1.5<x< 1.6

3.40 if 1.6<x<1.7
3.60 if 1.7<x< 1.8
3.80 if 1.8<x<1.9
400 if 1.9<x<2.0
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55.(a) ° 10000 20,000  I(indollars)

(b) On $14 , 000 , tax is assessed on $4000 , and 10%($4000)=$400 .

On $26 , 000 , tax is assessed on $16 , 000 , and 10%($10 , 000)+15%($6000)=$1000+$900=$1900 .
(¢) As in part (b), there is $1000 tax assessed on $20,000 of income, so the graph of T is a line
segment from (10 , 000,0) to (20 , 000,1000) . The tax on $30,000 is $2500, so the graph of T' for
x>20, 000 is the ray with initial point (20 , 000,1000) that passes through (30 , 000,2500) .

T (in dollars)

25001

10001

0 10,000 2(),(50() 3(),&)00 I (in dollars}

56. One example is the amount paid for cable or telephone system repair in the home, usually
measured to the nearest quarter hour. Another example is the amount paid by a student in tuition fees,
if the fees vary according to the number of credits for which the student has registered.

57. f is an odd function because its graph is symmetric about the origin. g is an even function
because its graph is symmetric with respect to the y —axis.

58. f 1s not an even function since it is not symmetric with respect to the y —axis. f is not an odd
function since it is not symmetric about the origin. Hence, f is neither even nor odd. g is an even
function because its graph is symmetric with respect to the y —axis.

59. (a) Because an even function is symmetric with respect to the y —axis, and the point (5,3) is on
the graph of this even function, the point (-5,3) must also be on its graph.

(b) Because an odd function is symmetric with respect to the origin, and the point (5,3) is on the
graph of this odd function, the point (-5,-3) must also be on its graph.

60. (a) If f is even, we get the rest of the graph by reflecting about the y —axis.
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0 EY

(b) If f is odd, we get the rest of the graph by rotating 180" about the origin.

0

61. f()=x .
B 2 1 1
fexn=(x) =——==3
(-x)  x
=x =f()

So f is an even function.

L

0]

62. f(x)=x
- 1 1
fon =0 ===
(~x)" —x
= l?, =f(x_3)=ff(x)
X
So f 1s odd.

.

~i

63. f (x)=x2+x ,s0 f (—x)=(—x)2+(—x)=x2—x . Since this is neither f(x) nor —f(x) , the function f is




Stewart Calculus ET 5e 0534393217, 1. Functions and Models; 1.1 Four Ways to Represent a Function

neither even nor odd.

64. f(x)=x 4x_ .

£ =(x) 4 (x)°
=x - 4x =f(x)
So f is even.

65. f(x)=x3fx.
JEX) =(-x) 3f(fx) = X 4x

66. F(X)=3x +2x +1 , 50 f(-X)=3(x) +2(-x) +1= 3x +2x +1 . Since this is neither f(x) nor - f(x) ,
the function f is neither even nor odd.




Stewart Calculus ET 5e 0534393217, 1. Functions and Models; 1.2 Mathematical Models: A Catalog of Essential Functions

1.@@) f (x)=§\I; is a root function with n=5 .

, 2

(b) g(x)=\ 1-x is an algebraic function because it is a root of a polynomial.
9 4

(¢) h(x)=x +x is a polynomial of degree 9 .
x+1 . . .. . .

(d) r(x)= 5 isa rational function because it is a ratio of polynomials.

X +x
(e) s(x)=tan 2x is a trigonometric function.

(f) t(x)=log1 o X is a logarithmic function.

2.(a) y=(x6)/(x+6) is a rational function because it is a ratio of polynomials.

2
(b) y=x+x / \’ x-1 1is an algebraic function because it involves polynomials and roots of
polynomials.

(c) y=10x is an exponential function (notice that x is the exponent ).

(d) y=x10 is a power function (notice that x is the base ).

(e) y=2t6+t4f7r is a polynomial of degree 6 .

(f) y=cos 0+sin 6 is a trigonometric function.

3. We notice from the figure that g and & are even functions (symmetric with respect to the y —axis)
and that f is an odd function (symmetric with respect to the origin). So (b) [ y=x5] must be f . Since
g is flatter than 4 near the origin, we must have (c) [ y=x8] matched with g and (a) [ y=x2] matched
with 4 .

4. (a) The graph of y=3x is a line (choice G ).

(b) y=3x is an exponential function (choice f ).

(c) y=)c3 is an odd polynomial function or power function (choice F ).

(d) y=§\I; =x1/3 is a root function (choice g ).

5. (a) An equation for the family of linear functions with slope 2 is y=f(x)=2x+b , where b is the y -
intercept.
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b=3b=0

b

bh=-1

/ y=2x+bh
/ x

(b) f(2)=1 means that the point (2,1) is on the graph of f . We can use the point-slope form of a line
to obtain an equation for the family of linear functions through the point (2,1) . y-1=m(x-2) , which
is equivalent to y=mx+(1-2m) in slope-intercept form.

\V m=1

/ y—l=m(x—2\

(¢) To belong to both families, an equation must have slope m=2 , so the equation in part (b),
y=mx+(1-2m) , becomes y=2x-3 . It is the only function that belongs to both families.

6. All members of the family of linear functions f(x)=1+m(x+3) have graphs that are lines passing
through the point (-3,1) .
p

me=1
7.
/_3 0 x
m=—1

A

3
Il
=

ya

7. All members of the family of linear functions f(x)=c-x have graphs that are lines with slope -1 .
The y —intercept is c .

\
N

-
o

W/

o 8o~
o

<&

8. (a)
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200+

100+

0l 10 20 30 40 50 60 X

(b) The slope of —4 means that for each increase of 1 dollar for a rental space, the number of spaces
rented decreases by 4 . The y —intercept of 200 is the number of spaces that would be occupied if
there were no charge for each space. The x —intercept of 50 is the smallest rental fee that results in no
spaces rented.

32

<40,y ¢
9. (a)

9 9 °
(b) The slope of 5 means that F' increases 3 degrees for each increase of 1 C. (Equivalently, F

increases by 9 when C increases by 5 and F' decreases by 9 when C decreases by 5 .) The F —
intercept of 32 is the Fahrenheit temperature corresponding to a Celsius temperature of O .

10. (a) Let d= distance traveled (in miles) and = time elapsed (in hours). At =0, d=0 and at r=50

1 5 5 40-0
minutes =50- — =~ h, d=40 . Thus we have two points: (0,0) and ( = ,40) » S0 M=~ =48 and

60 6 6
6 -0
so d=48t .
d
96T
(b) 0 ‘1 é t
(¢) The slope is 48 and represents the car’s speed in mi / h.
11. (a) Using N in place of x and T in place of y , we find the slope to be
T -T
271 8070 10 1 . . 1 1 173
NN =T3113°60"¢6 So a linear equation is 7-80= c (N-173) &T-80= c N- c
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1 307 | 307 =
=6N+ 6 I: 5 =51.16].

1
(b) The slope of ¢ means that the temperature in Fahrenheit degrees increases one-sixth as rapidly

as the number of cricket chirps per minute. Said differently, each increase of 6 cricket chirps per

. . O
minute corresponds to an increase of 1 F.

1 307 —o o
(c) When N=150 , the temperature is given approximately by 7'= ‘ (150)+ 3 =76.16 F~76 F.

12. (a) Let x denote the number of chairs produced in one day and y the associated cost. Using the

. 4800-2200 2600
points (100,2200) and (300,4800) we get the slope 300-100 = 200
& y=13x+900 .

=13 . So y-2200=13 (x-100)

(b) The slope of the line in part (a) is 13 and it represents the cost (in dollars) of producing each
additional chair.

(¢) The y —intercept is 900 and it represents the fixed daily costs of operating the factory.

y
5000
4000
3000

20001

1000

0 100 200 300 X

change in pressure  4.34

10 feet change in depth =~ 10
depth with the point (d,P)=(0,15) , we have the slope-intercept form of the line, P=0.434d+15 .

85
(b) When P=100 , then 100=0.434d+15<0.434d=85<d= m ~ 195.85 feet. Thus, the pressure is

13. (a) We are given =0.434 . Using P for pressure and d for

2
100 1b/in  at a depth of approximately 196 feet.

14. (a) Using d in place of x and C in place of y , we find the slope to be

€€y 460380 80
d,d 800480 320

1
4
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1 1 1
So a linear equation is C-460= p (d-800) & C-460= 1 d-200&C= 1 d+260 .

1
(b) Letting d=1500 we get C= y (1500)+260=635 . The cost of driving 1500 miles is $635.

¥

1000

5oo~/

o T T 0
(c) 500 1000 ¥

The slope of the line represents the cost per mile, $0.25 .

(d) The y —intercept represents the fixed cost, $260 .

(e) A linear function gives a suitable model in this situation because you have fixed monthly costs
such as insurance and car payments, as well as costs that increase as you drive, such as gasoline, oil,
and tires, and the cost of these for each additional mile driven is a constant.

15. (a) The data appear to be periodic and a sine or cosine function would make the best model. A
model of the form f(x)=a cos (bx)+c seems appropriate.

(b) The data appear to be decreasing in a linear fashion. A model of the form f(x)=mx+b seems
appropriate.

16. (a) The data appear to be increasing exponentially. A model of the form f(x)=a- b or

f(x)=a- b+ seems appropriate.
(b) The data appear to be decreasing similarly to the values of the reciprocal function. A model of the
form f(x)=a/x seems appropriate.

17. Some values are given to many decimal places. These are the results given by several computer

algebra systems — rounding is left to the reader.
15

(@) o—————— 61000
A linear model does seem appropriate.
: . ) 8.2-14.1
(b) Using the points (4000,14.1) and (60,000,8.2) , we obtain y-14.1= 60.0002000 (x-4000) or,

equivalently, y~-0.000105357x+14.521429 .
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. 61,000
(c) Usmg a computmg device, we obtain the least squares regression line

y=-0.0000997855x+13.950764 .
The following commands and screens illustrate how to find the least squares regression line on a TI-
83 Plus. Enter the data into list one (1) and list two (L.2). Press [s7atl1 to enter the editor.

L] L Lz 1 L1 Lz N
T R TTREEG
goon |13 iz
Boon |13y 124
izoon |12 108
i |1 g | g
e Jiee | [ )
L ={48008, cBBR. 2. Leiim =
Find the regession line and store itin Y | . Press [2nd (QUIT/STATI[>] (4] VARSI [»] 1] [1] ENTER| |
LinkedCax+bd Y10 [Linked A Flotz Flots
w=ath P E-E, 9VE545618
=9, 978546 E -5 TEY3E “SH+13. 9587
b=13. 25876408 6$u??@85
YR
Wz
=
n cHE=

Note from the last figure that the regression line has been stored in Y | and that Plotl has been turned
on (Plotl1 is hi ghhghted) You can turn on Plotl from the Y= menu by placing the cursor on Plotl and

Flokz  Flot:

ft

oot LE e wpal BN L
Hh-: HIH [

(d) When x=25, 000 , y=~11.456 ; or about 11.5 per 100 population.
(e) When x=80 , 000 , y=~5.968 ; or about a 6% chance.
(f) When x=200, 000 , y is negative, so the model does not apply.

18. (a)
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230 (chirps/min)

45 o) 95 (OF)
270 (chirps/min)

(b) 45 : i/ 105 (°F)
Using a computing device, we obtain the least squares regression line y=4.856x-220.96 .

(¢) When x=100" F, y=264.7~265 chirps / min.

2040

].9. (a) ]89610 . 2000 {year)

A linear model does seem appropriate.
20 ()

2000 (year)

(b) 1896
Using a computing device, we obtain the least squares regression line y=0.089119747x-158.2403249
, where x is the year and y is the height in feet.

(c) When x=2000 , the model gives y~20.00 ft. Note that the actual winning height for the 2000
Olympics is less than the winning height for 1996 — so much for that prediction.

(d) When x=2100 , y=28.91 ft. This would be an increase of 9.49 ft from 1996 to 2100. Even though
there was an increase of 8.59 ft from 1900 to 1996, it is unlikely that a similar increase will occur
over the next 100 years.

20. By looking at the scatter plot of the data, we rule out the linear and logarithmic models.
610 Cost (in §)

a5\l 100
{Reduction %)

Scatter plot
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We try various models:

Quadratic:  \—() 496x" 62.2893x+1970.639

. 3 2
Cubic: v=0.0201243201x —3.88037296x +247.6754468x-5163.935198
. 4 3 2
Quartic: y=0.0002951049x —0.0654560995x +5.27525641x —180.2266511x+2203.210956
Exponential: > 41422994(1.054516914)"
. 3

Power: y=0.000022854971x .616078251
610 Cost (in $) . 610 Cost (in'$) 610 Cost {in $)

’ Quadratic model Eg(;dx|cxion o 450 Cubic model :g:dwion » 450 Quartic model (l'l(i(;duc‘ion %>
610 Cost (in $) N 610 Cost (in §)

Q " B / )

Bxponential mode] (Reduction %) 0 Power model (Redaction %)

After examining the graphs of these models, we see that the cubic and quartic models are clearly the
best.

6300 (millions)

2 1 ) 18900 ““““““ 2010 (year)

Using a computing device, we obtain the cubic function y=ax3+bx2+cx+d with a=0.0012937 ,
b=-7.06142 ,c=12 ,823 ,and d=-7, 743, 770 . When x=1925 , y~ 1914 (million).

22. (a) T=1.000396048611.499661718

1.5 2 3
(b) The power model in part (a) is approximately 7=d . Squaring both sides gives us T =d , so the
2 3
model matches Kepler’s Third Law, T =kd .
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1. (a) If the graph of f is shifted 3 units upward, its equation becomes y=f(x)+3 .

(b) If the graph of f is shifted 3 units downward, its equation becomes y=71(x)-3 .

(c) If the graph of f is shifted 3 units to the right, its equation becomes y=f(x-3) .

(d) If the graph of f is shifted 3 units to the left, its equation becomes y=f(x+3) .

(e) If the graph of f is reflected about the x —axis, its equation becomes y=—f(x) .

(f) If the graph of f is reflected about the y —axis, its equation becomes y=f(-x) .

(g) If the graph of f is stretched vertically by a factor of 3 , its equation becomes y=3 f(x) .

1
(h) If the graph of f is shrunk vertically by a factor of 3, its equation becomes y= 3 f(x).

2. (a) To obtain the graph of y=5f(x) from the graph of y=f(x) , stretch the graph vertically by a
factor of 5.

(b) To obtain the graph of y=f(x-5) from the graph of y=f(x) , shift the graph 5 units to the right.

(c¢) To obtain the graph of y=-f(x) from the graph of y=f(x) , reflect the graph about the x —axis.

(d) To obtain the graph of y=-5f(x) from the graph of y=f(x) , stretch the graph vertically by a factor
of 5 and reflect it about the x —axis.

(e) To obtain the graph of y=f(5x) from the graph of y=f(x) , shrink the graph horizontally by a
factor of 5 .

(f) To obtain the graph of y=5f(x)-3 from the graph of y=f(x) , stretch the graph vertically by a
factor of 5 and shift it 3 units downward.

3. (a) (graph 3) The graph of f is shifted 4 units to the right and has equation y=f(x-4) .
(b) (graph 1) The graph of f is shifted 3 units upward and has equation y=f(x)+3 .

1
(¢) (graph 4) The graph of f is shrunk vertically by a factor of 3 and has equation y= 3 f(x).

(d) (graph 5) The graph of f is shifted 4 units to the left and reflected about the x —axis. Its equation

is y=f(x+4) .
(e) (graph 2) The graph of f is shifted 6 units to the left and stretched vertically by a factor of 2 . Its
equation is y=2f(x+6) .

4. (a) To graph y=f(x+4) we shift the graph of f , 4 units to the left.

0

The point (2,1) on the graph of f corresponds to the point
(2-4,1)=(-2,1) .
(b) To graph y=f(x)+4 we shift the graph of f , 4 units upward.
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QO

X

The point (2,1) on the graph of f corresponds to the point (2,1+4)=(2,5) .
(c) To graph y=2f(x) we stretch the graph of f vertically by a factor of 2 .

y

\

0

The point (2,1) on the graph of f corresponds to the point (2,2-1)=(2,2) .

1
(d) To graph y=- > f(x)+3 , we shrink the graph of f vertically by a factor of 2 , then reflect the

0

X

The point (2,1) on the graph of f corresponds to the point <

0

The point (4,-1) on the graph of f corresponds to the point <

resulting graph about the x —axis, then shift the resulting graph 3 units upward.

1
25 1+3> =(2,2.5) .

5. (a) To graph y=f(2x) we shrink the graph of f horizontally by a factor of 2 .

%-4,—1>=(2,—1) |

1
(b) To graph y=f ( 5 x> we stretch the graph of f horizontally by a factor of 2 .

~

0

N

X

The point (4,-1) on the graph of f corresponds to the point (2-4,-1)=(8,-1) .
(c) To graph y=f(-x) we reflect the graph of f about the y —axis.
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\/ 0 X

The point (4,-1) on the graph of f corresponds to the point (-1-4,-1)=(-4,-1) .
(d) To graph y=-f(—x) we reflect the graph of f about the y —axis, then about the x —axis.

N\

The point (4,-1) on the graph of f corresponds to the point (-1-4,-1--1)=(-4,1) .

2
6. The graph of y=f(x)="\ 3x-x has been shifted 2 units to the right and stretched vertically by a
factor of 2 . Thus, a function describing the graph is

y=2 f(x—2)=2'\/ 3(x2) (x2)
= 243x 6 (12 4x+4) =24 2+7x 10

2
7. The graph of y=f(x)=" 3x—x has been shifted 4 units to the left, reflected about the x —axis, and
shifted downward 1 unit. Thus, a function describing the graph is

-1 - f x+4 -1
—— — v
y= reflect shift shift
about 4units lunit
X—axis left down

This function can be written as

y = f(x+4)—1=—'\l 3(cHd)- () —1=—\/ 312 (48x4+16) -1
= % Sxd 1

8. (a) The graph of y=2sin x can be obtained from the graph of y=sin x by stretching it vertically by
a factor of 2 .
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2....
% 37
2 2
-~ g Z ka Dw 3T 37 x
2

_2_

(b) The graph of y=1+yx can be obtained from the graph of y=\l; by shifting it upward 1 unit.

wl..:l

1,2)

0{

3

3 3
9. y=—x : Start with the graph of y=x and reflect about the x —axis. Note: Reflecting about the y -

. S . 3
esult since substituting —x for x gives us y=(-x) =x

axis gives the same r
y >

et
Il

|
e

0 x

2 2 2
10. y=1-x =—x +1 : Start with the graph of y=x , reflect about the x —axis, and then shift 1 unit

upward.
¥ ¥ ¥

Q X

et
il
w

1. y=(x+1)2 : Start with the graph of y=)c2 and shift 1 unit to the left.
¥ ¥

/
/

0 X 1
y={(x+1)?

12.
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2 2 2 2
y=x —4x+3=(x —4x+4)-1=(x-2) -1 : Start with the graph of y=x , shift 2 units to the right, and then
shift 1 unit downward.

\/. \j\\a/

3

y=y v={x— 27 y={r—2y-1

13. y=142cos x : Start with the graph of y=cos x, stretch vertically by a factor of 2 , and then shift 1
unit upward.

¥ ¥

N o NS = \/{1\/ x N o ¥

¥ ECONX y=2cosx y=2c¢osx + |

14. y=4sin 3x : Start with the graph of y=sin x, compress horizontally by a factor of 3 , and then
stretch vertically by a factor of 4 .

¥ ¥ ¥

yEsiny y=sin 3x y=4 sin 3x

SN ™ 4 ANANTEAND 3
v 4 N o o X 1

15. y=sin (x/2) : Start with the graph of y=sin x and stretch horizontally by a factor of 2 .

y=sinx y=sin{x/2}

N\ " d Pt " g 2
v 0 \/ X ’ it Ny

16. y=1/(x-4) : Start with the graph of y=1/x and shift 4 units to the right.

x=4;
- o1 |
YTy b E—] é

0 0 E

v
X H X
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17. y=

¥

!

4 4
18. y=(x+2) +3 : Start with the graph of y=x , shift 2 units to the left, and then shift 3 units upward.

T4y

J A\

ped y=+2) y=+20+ 3

I 2 | ) 1 2 2
19. y= 5 (x +8x)= 5 (x +8x+16)-8= > (x+4) -8 : Start with the graph of y=x , compress vertically by

a factor of 2 , shift 4 units to the left, and then shift 8 units downward.

i

5

<> 3 <> X e v <>
1-8

¥EA y==x y= é(x + 4y y= %{X +4¥ -8

¥

20. y=1+—\3lx71 : Start with the graph of y=§\I; » shift I unit to the right, and then shift I unit upward.

o U i+
y=1k / y=Ya~1 /
5 > I} /E x 0 ; X
/ _/ ””” 1 ¥ 1 + ;\Y - 1

21. y=2/(x+1) : Start with the graph of y=1/x , shift 1 unit to the left, and then stretch vertically by a
factor of 2.
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1 s T
22.y= y tan (x— 1 ) : Start with the graph of y=tan x , shift 1 units to the right, and then compress
vertically by a factor of 4 .
y=tan v y=tan{r—F}

oo . 2
s s

ik s .
i 1

s H {
H H

H 1

H H

H :

{ :

H 1

H {

i :

H t

H :

: :

H 1
7 t
! {

i i

H N

i H

i :

H 1

i i

H :

{ H

H :

3w _.’1
R

X

23. y=|sin x| : Start with the graph of y=sin x and reflect all the parts of the graph below the x —axis
about the x —axis.

X

N /N AN
\/ a 7’;\/ Nx

2 2 2 2
24. y=|x —2x| =[x 2x+1-1 | = | (x-1) —1| : Start with the graph of y=x , shift 1 unit right, shift 1 unit
downward, and reflect the portion of the graph below the x —axis about the x —axis.

¥ 2
prext \

y=i
X ol x o \1/ x o X

y=ix- 1P -] y= =1 —1]

25. This is just like the solution to Example 4 except the amplitude of the curve (the 30 ° N curve in
2
Figure 9 on June 21) is 14-12=2 . So the function is L(¢)=12+2sin |: %5 (t—80)] . March 31 is the
90 th day of the year, so the model gives L(90)~ 12.34 h. The daylight time (5:51 A.M. to 6:18 P.M.)
is 12 hours and 27 minutes, or 12.45 h. The model value differs from the actual value by
12.45-12.34

1245 ~0.009 , less than 1% .

26. Using a sine function to model the brightness of Delta Cephei as a function of time, we take its
period to be 5.4 days, its amplitude to be 0.35 (on the scale of magnitude), and its average magnitude
to be 4.0 . If we take r=0 at a time of average brightness, then the magnitude (brightness) as a

2
function of time 7 in days can be modeled by the formula M (#)=4.0+0.35sin ( 5—72 t> .
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27. (a) To obtain y=f(|x|) , the portion of the graph of y=f(x) to the right of the y —axis is reflected
about the y —axis.
(b) y=sin |x|

v

y=sin |x|

28. The most important features of the given graph are the x —intercepts and the maximum and
minimum points. The graph of y=1/f(x) has vertical asymptotes at the x —values where there are x —
intercepts on the graph of y=f(x) . The maximum of 1 on the graph of y=f(x) corresponds to a
minimum of 1/1=1 on y=1/f(x) . Similarly, the minimum on the graph of y=f(x) corresponds to a
maximum on the graph of y=1/f(x) . As the values of y get large (positively or negatively) on the
graph of y=f(x) , the values of y get close to zero on the graph of y=1/f(x) .

f d ¢
5 v X
! h
B i
i 1
: h

i

'

'

i

'

UL
N

29. Assuming that successive horizontal and vertical gridlines are a unit apart, we can make a table of
approximate values as follows.

X ot 213 a4 |5 6
f(x) 2 1713007030
9(x) 2 2713 28241710
e()+aol4 [44a338]3.1]2.0(0
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ftg

-
§
0 X

Connecting the points (x,f(x)+g(x)) with a smooth curve gives an approximation to the graph of f+g .
Extra points can be plotted between those listed above if necessary.

30. First note that the domain of f+g is the intersection of the domains of f and g ; thatis, f+g is
only defined where both f and g are defined. Taking the horizontal and vertical units of length to be
the distances between successive vertical and horizontal gridlines, we can make a table of
approximate values as follows:

X 2 -1 |0 1 2 12513
f(x) -1 122 [2.0 |24 |2.7]2.7(2.3
g(x) 1 |-1.3(-1.2-0.6 |0.3 [0.5]0.7
f(x)+g(x)|0 0.9 0.8 (1.8 |3.0(3.2]3.0

y

0

SR

g X

Extra values of x (like the value 2.5 in the table above) can be added as needed.

31, f()=x +2x : g(x)=3x -1 . D=R for both f and g .
(f42) (0= +2x )+(3x 1)=x +5x 1 , D=R .
(f@)@)=(x +2x)) (3x - 1)=x x +1 , D=R.
3 2 2 5 4 3 2
(fo)(x)=(x +2x )(3x —1)=3x +6x —x 2x , D=R.
3 2
2 1
< ]é > (x)= 2 +2 2l , D={ xlx#£+ +—= } since 3x2—1;é0 .

3x -1 \E

32. f()={1+x , D=[1,00) ; g(x)=y1-x , D=(-00,1] .
(f+g) (x)=y l+x+y 1-x , D=(-00,1]N[-1,00)=[-1,1] .
(f-g) )=y l+x—~1-x , D=[-1,1] .

(f2) (X)=\Il_ﬂ-\ll_ﬂc=\/ 1 x ,D=[-1,1] .




Stewart Calculus ET 5e 0534393217, 1. Functions and Models; 1.3 New Functions from Old Functions

()i

= , D=[-1,1) . We must exclude x=1 since it would make L undefined.
8 \I 1-x J

33. f();)=x , g(x)=1/x

f+g ¢

35. f (x)=2x27x ; g(x)=3x+2 . D=R for both f and g , and hence for their composites.
(fo @) (X)=f(g(x)=fBx+2)=2(3x+2)  (3x+2)=2(9x +12x+4) 3x 2=18x +21x+6 .
(90 F)(X)=g(f(X)=g(2x —xX)=3(2x —x)}+2=6x 3x+2 .

(fo HX)=f(f(x))=f (2x27x)=2(2x27x)27(2x27x)=2(4x4f4x3+x2)72x2+x=8x478x3+x .
(g0 8)(x)=g(g(x))=g(3x+2)=3(3x+2)+2=9x+6+2=9x+8 .

36. f(x)=1-x , D=R ; g(x)=1/x , D={x|x#0} .
(fog) X)=F(g())=f (1/x)=1-(1/x) =1-1/x", D={xIx0} .

(g0 f) (M=g(F)=g (1-x)=1/(1-x) , D={xl1-x #0}={xIx£1}.

(fo ) =f(f@)=f(-x)=1-(1-x)’ [=x -3 +3x], D=R.
(gog) (x)=g(g(x))=g (1/x)=1/(1/x)=x , D={x|x#0} because 0 is not in the domain of g .

37. f(x)=sin x, D=R; g(x)=1-yx , D=[0,00) .

(fog) (M)=f(g(x)=f(1+x)=sin (1-x), D=[0.00].

(gof) (x)=g(f(x))=g (sin x)=1—sin x . For \I sin x to be defined, we must have sin x> 0<
xe[0x]u[2m,37u[ 27,7 |u[4n,57]u[ 47, 37]U... , s0

D={x|xc[2nm m+2n7],where n is an integer} .
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(fof) (X)—f(f(x))—f (sin x)=s (sm x) , D=R.

(gog) (=g(g(x)=g (1~ J‘ )=1 w[

D={x>011-x>0} ={ 2012\1_ = x>0| x< 1} =[0,1].

38. f(x)=1-3x, D=R : g(x)=5x +3x+2 , D=R .
(fo8) (X) =f (g(x))=f(5x +3x+2)=1 3(5x +3x+2)
—1 15x 9x 6= 15x 9x 5, D=R.
(80.6) (X) =g( f(x))=g (1 3x)=5(1 3x) +3(1 3x0)42=5(1 6:x49x )43 9x+2

=5 30x+45x" 9x+5=45x"39x+10 , D=R .
(fof) )=f(f(x))=f (1-3x)=1-3(1-3x)=1-3+9x=9x 2, D=R .

(898) (%) =g (g(x))=g(5x +3x42)=5(5x +3x+2) +3(5x 43x+2)+2
5(25x 430X 429 +124+4)+15x +9x+6+2
1255 +150 +145x +60x+20+15x +9x+8
—125x +150x +160x +69x+28, D=R

1
39. f(x)=x+- , D={xIx£0} ; g(x)= , D={xlx#-2} .
x+1 x+1 1 x+1  x+2
(fog)(x) ~ BN=f ( ) > 2T el T2
xX+2

(DA DHOA2)(x42) (x2+2x+1 ) + ( x2+4x+4) 3 2x2+6x+5
B (x+2)(x+1) B (x+2)(x+1) T (x42)(x+1)

Since g(x) is not defined for x=-2 and f(g(x)) is not defined for x=-2 and x=-1 , the domain of (
fog)(x)is D={xlx#-2,-1} .

< 1 > ! X +1+x
1 o+ X * X x2+x+1 x2+x+1
(go f(x)=g(f(x))=¢g <X+ - >= = .

2 -2 -
(x+l ).,.2 x +142x  x +2x+1 ()c+1)2
X —_—
X
Since f(x) is not defined for x=0 and g(f(x)) is not defined for x=-1 , the domain of (go f)(x) is
D={x|x#-1,0} .
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1 1 1 1 1 1 x
=f(f(x))=f<x+‘>=<x+—>+ 1=)c+—+ > =x+—+2—

(fo/)x) * o X+ - S| YoxH
* X
2 2 4 2 2 2
_x(x) (x +1)+1(x +1)+x(x) X X x4
X +1) X +1)
4 2
+3x +1
= , D={xIx#0} .
x(x +1)
x+1 N X+1+1(x+2)
)= )= <x+1 >_ 42 x+2 _ xHlx42 2x43 S < ot
(808)0=g(8N=¢ \ 115 )= 31 L, MHL2HD) T xele2erd” 35 ince g(x) is no

x+2 x+2

5
defined for x=-2 and g(g(x)) is not defined for x=— = , the domain of (gog)(x) is

3
5
D= { xlx#-2,— § }

3
40. f(x)=\l 2x+3 , D= { xlx>— 5 } ; g(x)=x2+1 ,D=R .

(fo®)x)=f (x2+1)=\/ 20 +1)43 =\/ 2:x+5 , D=R.
(g0 H)()=g (Y2x+3 )=({2x+3 )2+1=(2x+3)+1=2x+4 , D= { xla>—

(fo N@)=f (Y243 )=y 2 (Y2x43 ) +3=y 2204343 ,D={x|x2—

2 2 .2 4 2 4 2
(g0 @)(x)=g(x +D)=(x"+1) +1=(x +2x +1)+1=x +2x +2, D=R..

|
}

ol DI

41

(fogoh)(x) =f(g(h(x))=f(g(x-1)=f(2(x-1))
=2(x 1)+1=2x 1

42.

(fo8om)(X) = f(g(h(x))=f(g(1-1)=f((1-x))
=2(1-x) —1=2x"—4x+1

43.
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(fo8M(X) =f(g(h(x))=f (g(x+3))=F(x+3) +2)

— 61 )=\ (Pr6xe11) 1=y 22462410

2
cos yx+3+1

44. (fogoh)()=f(g(h(x)))=f (g (Yx+3 ) )=f (cos {x+3 )=

45. Let g(x)=x +1 and f()=x . Then (fo g)(x)=f(g(x))=(x +1) =F(x) .

46. Let g(x)=yx and f(x)=sin x . Then (fog)(x)=f(g(x))=sin (yx )=F(x).

2
X

47. Let g(x)=x2 and f(x)= ﬁ . Then (fog)(x)=f(g(x))= - =G(x) .
x +4

48. Let g(x)=x+3 and f(x)=1/x . Then (fog)(x)=f(g(x))=1/(x+3)=G(x) .

49. Let g(t)=cos t and f(t)=\l; . Then (fog)(t)= f(g(t))=\l cos t=u(t) .

tan t
1+tan ¢

50. Let g(f)=tan ¢ and f(r)= ﬁt _Then (fo g)(t)=f(g(t))= —u(r) .

2

51. Let h(x)=x , g(x)=3", and f(x)=1—x . Then (fo goh)(x)=1-3" =H(x) .
52. Let h(x)=\I; , 8(x)=x-1, and f(x)=§\I; . Then (fogo h)(x):%’ \I;—l =H(x) .

53. Let h(x)=yx ., g(x)=sec x ,and f(x)=x" . Then (fogoh)(x)=(sec yx ) *=sec X )=Hw) .

54.(a) f(g(1)=f(6)=5

(b) g(f(1))=g(3)=2

(©) f(f(D)=f(3)=4

(d) g(g(1))=g(6)=3

(e) (g0 /)(3)=g(f(3)=g(#=1
) (fog)0)=f(g(6)=/(3)=4

55.(a) g(2)=5, because the point (2,5) is on the graph of g . Thus, f(g(2))=/(5)=4 , because the
point (5,4) is on the graph of f .
(b) 5(f(0))=g(0)=3
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(©) (fog)0)=1(g(0)=/(3)=0

(d) (gof)(6)=g(f(6))=g(6) . This value is not defined, because there is no point on the graph of g that
has x —coordinate 6 .

(e) (gog)(-2)=g(g(-2))=g(1)=4

(&) (foHNA=f(f(4)=f(2)=2

56. To find a particular value of f(g(x)) , say for x=0 , we note from the graph that g(0)~2.8 and
f(2.8)~-0.5 . Thus, f(g(0))~ f(2.8)~-0.5 . The other values listed in the table were obtained in a
similar fashion.

x| g0 | fig)
x | g | fg() g /g
0 2.8 -0.5
-5 -0.2 -4 1 7> 7
-4 1.2 -373 > 1'2 _3'3
-3 2.2 -1.7 3 _6 > _4'
-2 2.8 -0.5 :
= 3 00 4 -1.9 2.2
- 5 4.1 1.9

AN

57. (a) Using the relationship distance = rate - time with the radius r as the distance, we have
r(t)=60¢ .

2 2 2
(b) A=ntr = (Aor)(t)=A(r(t))=m(60r) =36007r¢ . This formula gives us the extent of the rippled area

. 2 .
(incm ) atany time? .

58. (a) d=rt=d(t)=350¢
(b) There is a Pythagorean relationship involving the legs with lengths d and 1 and the hypotenuse

with length s : d’+1'=s" . Thus, s(d)='\/ 4+l
© (sod)(t)=s(d(t))=s(350t)='\/ (3501) +1

59. (a)

—

of 1
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H(t)={ 0 if t<0

1 if t0
(b)
V
120#—
0] '
[ 0 if 0 ~
V(t)—{ 120 if oo S0 VO=120H().
1
240
(€ °f = ’

Starting with the formula in part (b), we replace 120 with 240 to reflect the different voltage. Also,
because we are starting 5 units to the right of 7=0 , we replace ¢t with -5 Thus, the formula is
V()=240H(t-5) .

60. (a)
R(@) =tH(t)

_ 0 if <0
B t if t>0

e

0} I ‘

) V(t):{ 0 if t<0

2t if 0<t<60
soV(t)=2tH(t) ,t<60 .
V

120

0! 6:0 t
0 if 1<7
() V(t)={ 4(07) ey SOVO=AETDH(T) 1<32 .
V
100 /
o) 7 321

61. (a) By examining the variable terms in g and & , we deduce that we must square g to get the terms

4x" and 4x in h . If we let f(x)=x +¢ , then ( fo 2)(x)=F((x))=f(2x+1)=(a+1) +e=dx +4x+(1+¢) .
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Since h(x)=4x2+4x+7 , we must have 1+c=7 . So c¢=6 and f (x)=x2+6 .
(b) We need a function g so that f(g(x))=3(g(x))+5=h(x) . But

2 2 2 2
h(x)=3x +3x+2=3(x +x)+2=3(x +x-1)+5, so we see that g(x)=x +x-1 .

62. We need a function g so that g(f(x))=g(x+4)=h(x)=4x-1=4(x+4)-17 . So we see that the function
g must be g(x)=4x-17 .

63. We need to examine /(—x) .

h(=x)=(fo g)(-x)=f(g(-x))=/f(g(x)) [because g is even] =h(x)
Because i(—x)=h(x) , h is an even function.

64. h(-x)=f(g(-x))=f(-g(x)) . At this point, we can’t simplify the expression, so we might try to find
2
a counterexample to show that % is not an odd function. Let g(x)=x , an odd function, and f(x)=x +x .

Then h(x)=x2+x, which is neither even nor odd.

Now suppose f is an odd function. Then f(—g(x))=—f(g(x))=-h(x) . Hence, h(-x)=-h(x) , and so h is
odd if both f and g are odd.

Now suppose f is an even function. Then f(-g(x))=f(g(x))=h(x) . Hence, h(-x)=h(x) , and so A is
even if g is odd and f is even.
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1. f(0)=x +2
(a) [72922] by [7292]

-2

-2

(4b) [0,4] by [0,4]

7

4

(C) [7494;] by [7494]
N

-4

(d) [-8.8] by [-4.40]

-8t I8
—4

(e) [-40,40] by [-80,800]

=40 N 5, 40
—80

The most appropriate graph is produced in viewing rectangle (d).

2. fX)=x +Tx+6
(a) [_5’5] by [_5’5]
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L
WAl

-5

(b) [0,10] by [-20,100]

100

Ol JIO

-20

(¢) [-15.8] by [20,100]

(@) [-10,3] by [-100,20]
20
—I()’ }3

The most appropriate graph is produced in viewing rectangle (c).

3. f(X)=10425xx
(a) [7494] lzy [7494]

|
]

-4

(b) [-10,10] by [-10,10]
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) .
| |

—-10

(¢) [-20,20] by [-100,100]

100

\ N
—20 /\ 20

1

—100

(d) [-100,100] by [-200,200]

200
1 100

ul
| |

—200

The most appropriate graph is produced in viewing rectangle (c) because the maximum and minimum
points are fairly easy to see and estimate.

4. f(x):\/ 8xx
(a) [_4’4] Ey [_4’4]

(b) [-5.,5] by [0,100]

100

—4
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(¢) [-10,10] by [-10,40]
40

-10

J 10

P

~10

_L Jl()

The most appropriate graph is produced in viewing rectangle (d).

2
5. Since the graph of f(x)=5+20x-x is a parabola opening downward, an appropriate viewing

rectangle should include the maximum point.
150

L U

—50

6. An appropriate viewing rectangle for f' (x)=x3+30x2+200x should include the high and low points.
500
-2 {V/\ f } 2

=300

7. f(x)=0.01x3fx2+5 . Graphing f in a standard viewing rectangle, [-10,10] by [-10,10] , shows us
what appears to be a parabola. But since this is a cubic polynomial, we know that a larger viewing
rectangle will reveal a minimum point as well as the maximum point. After some trial and error, we
choose the viewing rectangle [-50,150] by [-2000,2000] .
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L
e

—2000

2000

8. f(X)=x(x+6)(x-9)

140

—250

4
9. fx)=\ 81 x" is defined when

4
81—x42 O<:>x4§ 81« |x|< 3, so the domain of f is [-3,3] . Also 0< \/ 817x4§ -\4I 81=3, so the range
is [0,3] .

—250
{

11. The graph of f (x)=x2+(100/x) has a vertical asymptote of x=0 . As you zoom out, the graph of f

) 2
looks more and more like that of y=x .
250

Y
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2
12. The graph of f(x)=x/(x +100) is symmetric with respect to the origin.
0.1

13. f(x)=cos (100x)

5

TaAnlL
J VIV A

-1.5

14. f(x)=3sin (120x)

4

hannl
JAVRYA)

—4

15. f(x)=sin (x/40)

YRY

-1

1.5

16. f(x)=tan (25x)

3

02%//// ////}02

17.
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N

4

0

4
0

18. y=x +0.02sin (50x)
4

N

—0.5

0.2

5
0.5} vJﬁlj 0.5

-0.025

B

19. We must solve the given equation for y to obtain equations for the upper and lower halves of the
ellipse.

1-4x
2

2 2 2 2 2 14
A 12y =1e2y =1 4x oy = Tx oy=t
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/

-1

2 2 2 2 , 2
20.y 9x =1 y=149x & y=*+7\ [4+9x
4

e
-

B
B

J

2

1N

4

3 2
21. From the graph of f(x)=x -9x -4, we see that there is one solution of the equation f(x)=0 and it
is slightly larger than 9. By zooming in or using a root or zero feature, we obtain x~9.05.
20

o

_7{'

—120

3
22. We see that the graphs of f(x)=x and g(x)=4x-1 intersect three times. The x —coordinates of
these points (which are the solutions of the equation) are approximately -2.11,0.25, and 1.86 .

3
Alternatively, we could find these values by finding the zeros of A(x)=x —4x+1 .
10

2 . . . ..
23. We see that the graphs of f(x)=x and g(x)=sin x intersect twice. One solution is x=0. The other
solution of f=g is the x —coordinate of the point of intersection in the first quadrant. Using an
intersect feature or zooming in, we find this value to be approximately 0.88. Alternatively, we could

2
find that value by finding the positive zero of h(x)=x —sin x .
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-7 ——
I
i
/{

~1
Note : After producing the graph on a TI-83 Plus, we can find the approximate value 0.88 by using
the following keystrokes:
[2nd|CALCI[5] [ENTER][ENTER]1 [ENTER | The ‘“1°” is just a guess for 0.88.

-
o

24. (a) -15
The x —coordinates of the three points of intersection are x~-3.29 , -2.36 and 1.20 .
(b) Using trial and error, we find that m~0.3365 . Note that m could also be negative.

3 2
25. g(x)=x /10 is larger than f(x)=10x whenever x>100 .

300,000 g f

0

4 3 3
26. f(x)=x ~100x is larger than g(x)=x whenever x>101 .

2,000,000 o9
/
.r“"ffw
WM/
) L\ J 150
~1.000,000
27.
0.15

NI

0
We see from the graphs of y=|sin x—x| and y=0.1 that there are two solutions to the equation
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|sin x-x|=0.1 : x~-0.85 and x~0.85 . The condition |sin x-x|<0.1 holds for any x lying between
these two values.
2 QP 10,000
5

| RPN

28. -2 ~10,000

5.3 5
P(x)=3x —5x +2x, Q(x)=3x . These graphs are significantly different only in the region close to the
origin. The larger a viewing rectangle one chooses, the more similar the two graphs look.

29. (a) The root functions y=\l; , y=4 x and y=§\I;

(5

e For any n , the n th root of 0 is 0 and the n th root of 1 is 1 ; that is, all n th root functions pass
through the points (0,0) and (1,1) .

e For odd n , the domain of the n th root function is R , while for even n , it is {x€ RIx>0} .

e Graphs of even root functions look similar to that of \l; , while those of odd root functions

resemble that of é\l; .
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As n increases, the graph of I—V; becomes steeper near 0 and flatter for x>1 .

30. (a) The functions y=1/x and y=1/x3
3

o0 The graphs of all functions of the form y=1/xn pass through the point (1,1) .

o If n is even, the graph of the function is entirely above the x— axis. The graphs of 1x"
for n even are similar to one another.
o If n is odd, the function is positive for positive x and negative for negative x . The

graphs of 1/x" for n odd are similar to one another.

O As n increases, the graphs of 1/x" approach 0 faster as x— oo .

31. f (x)=x4+cx2+x . If ¢<0 , there are three humps: two minimum points and a
maximum point. These humps get flatter as ¢ increases, until at c=0 two of the humps
disappear and there is only one minimum point. This single hump then moves to the
right and approaches the origin as ¢ increases.
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32. f(x)= \’ 1+c)c2 . If ¢<0 , the function is only defined on [—1 / \I—_c L1 / \I—_c ] , and
its graph is the top half of an ellipse. If ¢=0, the graph is the line y=1 . If ¢>0, the
graph is the top half of a hyperbola. As ¢ approaches 0 , these curves become flatter
and approach the line y=1 .

33. y=xn27x . As n increases, the maximum of the function moves further from the
origin, and gets larger. Note, however, that regardless of n , the function approaches 0

as Xx— o0 .
4.5 600

2 3 2
35.y =cx +x
If ¢<0 , the loop is to the right of the origin, and if ¢ is positive, it is to the left. In both
cases, the closer c is to 0, the larger the loop is.
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(In the limiting case, c=0 , the loop is ‘infinite’’, that is, it doesn’t close.) Also, the
larger |c| is, the steeper the slope is on the loopless side of the origin.

36. (a) y=sin (x)
This function is not periodic; it oscillates less frequently as x increases.
1.5

nn A
RS

) 2
(b) y=sin (+’)
This function oscillates more frequently as | x| increases. Note also that this function

is even, whereas sin x is odd.
1.5

-1.5

37. The graphing window is 95 pixels wide and we want to start with x=0 and end
with x=27 . Since there are 94 ‘‘gaps’’ between pixels, the distance between pixels is
210 2

% . Thus, the x —values that the calculator actually plots are x=0+ 9—Z -n , where
n=0,1,2,...,93,94.For y=sin 2x , the actual points plotted by the calculator are

2m . 2 ) .
< a - sin <2- a n) ) forn=0,1,...,94. For y=sin 96x , the points plotted

2L 962—7T forn=0,1 94. But
are 94-sm “oq " orn=0,1,...,94. Bu

in (96 2.0 ) =sin (94 = .n+2- 2= .n )=sin ( 27ne2. 2
Sin 941’1 =s1n 94l’l+94l’l =s1n 7Tn+947’l
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2
=sin <2- 9—1 n> [ by periodicity of sine [,n=0,1,... ,94

So the y —values, and hence the points, plotted for y=sin 96x are identical to those
plotted for y=sin 2x .
Note: Try graphing y=sin 94x . Can you see why all the y —values are zero?

38. As in Exercise 37, we know that the points being plotted for y=sin 45x are

2L 45 2 forn=0, 1 94 . But
94-sm "oq " orn=0,1,...,94.Bu

) 2 . 2 2 . 2
sin (45- 94-n> =sin <47- 94-n72- 94-n>—sm <n7r2- 94-n>

—i 2 21 i 2 21 Subtracti
=sin (n7)cos “ g ) cos (n7)sin “on " [ Subtraction

formula for the sine]

=0 2 2 +1)si 2 2 =+si 2 n =0
=0- cos -94'n —(+1)sin -94-n =+sin -94-n ,n=0,
1,...,9%4

So the y —values, and hence the points, plotted for y=sin 45x lie on either y=sin 2x or
y=-sin 2x .
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1.(a) f(x)=d ,a>0

(b) R

(¢) (0,00)

(d) See Figures (c), (b), and (a), respectively.

2. (a) The number e is the value of a such that the slope of the tangent line at x=0 on the graph of

y=ax is exactly 1 .
(b) e~2.71828

(© flx)=¢"

3. All of these graphs approach 0 as x— —oo , all of them pass through the point (0,1) , and all of
them are increasing and approach co as x— oo . The larger the base, the faster the function increases

for x>0, and the faster it approaches 0 as x— oo .
5y=20" y=5" y=¢

4. The graph of e " is the reflection of the graph of ¢ about the y-— axis, and the graph of 8 " is the

reflection of that of 8 about the y —axis. The graph of 8" increases more quickly than that of e for
x>0, and approaches 0 faster as x— —oco .

X
N 3 =38

N
75
e

b
(o]

5. The functions with bases greater than 1 ( 3" and 10" ) are increasing, while those with bases less
I \* I \* 1 \*
than 1 |: < 3 > and( 0 > :| are decreasing. The graph of ( 3 > is the reflection of that of 3

1 X
about the y- axis, and the graph of ( 10 ) is the reflection of that of 10" about the y— axis. The

graph of 10" increases more quickly than that of 3" for x>0 , and approaches 0 faster as x— oo .
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6. Each of the graphs approaches co as x— —oco , and each approaches 0 as x— oo . The smaller the
base, the faster the function grows as x— —oo , and the faster it approaches 0 as x— oo .

y=03" y=0.1" 6

=
RET MMWN:J

7. We start with the graph of y=4x (Figure 3) and then shift 3 units downward. This shift doesn’t

affect the domain, but the range of y=4x—3 is (-3,00). There is a horizontal asymptote of y=-3.

¥

1

_

y

0

_

0

y=4"

y=4xf3

8. We start with the graph of y=4x (Figure 3) and then shift 3 units to the right. There is a horizontal
asymptote of y=0 .

¥

|

y:

0

x-3
y:
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9. We start with the graph of y=2x (Figure 2), reflect it about the y —axis, and then about the x —axis

(or just rotate 180" to handle both reflections) to obtain the graph of y=—27x . In each graph, y=0 is the

horizontal asymptote.
¥ ¥

G/x
-3

y=2' y=2" y=2"

10. We start with the graph of y=ex (Figure 13), vertically stretch by a factor of 2, and then shift 1 unit
upward. There is a horizontal asymptote of y=1.

D

0

y=2eX y=1+2€:X

11. We start with the graph of y=ex (Figure 13), reflect it about the x —axis, and then shift 3 units

upward. Note the horizontal asymptote of y=3 .

¥
0

— ;

y=3fex

12. We start with the graph of y=ex (Figure 13), reflect it about the y —axis, and then about the x —axis
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(or just rotate 180° to handle both reflections) to obtain the graph of y=fe7x . Now shift this graph 1
unit upward, vertically stretch by a factor of 5 , and then shift 2 units upward.
y

y=2+5(1-¢ )

13. (a) To find the equation of the graph that results from shifting the graph of y=ex2 units downward,
we subtract 2 from the original function to get y=ex—2 .
(b) To find the equation of the graph that results from shifting the graph of y=ex2 units to the right,

2
we replace x with x-2 in the original function to get y=e(x )
(c) To find the equation of the graph that results from reflecting the graph of =¢" about the x —axis,

q grap g the grap y

we multiply the original function by —1 to get y=fex .
(d) To find the equation of the graph that results from reflecting the graph of y=ex about the y —axis,
we replace x with —x in the original function to get y=e
(e) To find the equation of the graph that results from reflecting the graph of y=ex about the x —axis
and then about the y —axis, we first multiply the original function by —1 (to get y=fex ) and then

: o : X
replace x with —x in this equation to get y=—¢ .

14. (a) This reflection consists of first reflecting the graph about the x —axis (giving the graph with

equation y=—ex ) and then shifting this graph 2- 4=8 units upward. So the equation is y=—ex+8 .
(b) This reflection consists of first reflecting the graph about the y —axis (giving the graph with

- (x4
equation y=e * ) and then shifting this graph 2. 2=4 units to the right. So the equation is y=e (x-4)

15. (a) The denominator l+e " is never equal to zero because ¢'>0 , so the domain of f (x)=1/(1+ex) is
R.
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(b) 1-¢ =0<¢'=1x=0, so the domain of f(x)=1/(1-¢ ) is (~00,0)U(0,00) .

16. (a) The sine and exponential functions have domain R , so g(¢)=sin (e_t) also has domain R .

(b) The function g(r)=\| 1 2 has domain {11 2> 0}={¢12'< 1}={1r< 0}=(-00,0] .

1 6 3 6\ 3
17. Use y=Ca " with the points (1,6) and (3,24) . 6=Ca |:C=Zz ] and 24=Ca :>24=( p )a =

2 6
4=a = a=2 [ since a>0 | and C= 5 =3 . The function is f(x)=3- 2",

2 2 2
18. Given the y —intercept (0,2) , we have y=Cax=2ax . Using the point <2, 9 > gives us 9 =2a =
1 2 | B o 1 \* X
9 =a = a=§ [ since a>0 ]. The function is f(x)=2 3 or f(x)=2(3) .

19.If £(x)=5 , then p p p — =

h h h h
forh)f 57st 5SSt sT(s) 5x< 51>
= = = ; .
: 28-1 27
20. Suppose the month is February. Your payment on the 28th day wouldbe 2~ =2 =134 ,217,

728 cents, or $1 , 342,177 . 28 . Clearly, the second method of payment results in a larger amount
for any month.

21.2 ft =24 in, £(24)=24" in =576 in =48 ft. g(24)=2"" in =2 /(12- 5280) mi ~ 265 mi

22. We see from the graphs that for x less than about 1.8 , g(x)=5x >f (x)=x5 , and then near the point
(1.8,17.1) the curves intersect. Then f(x)>g(x) from x~ 1.8 until x=5 . At (5,3125) there is another
point of intersection, and for x>5 we see that g(x)>f(x) . In fact, g increases much more rapidly than
Jf beyond that point.
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9
24. We graph y=ex and y=1, 000 , 000 , 000 and determine where ¢'=1x10 . This seems to be true at
x~220.723 , so
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¢ S1x10° for x>20.723 .

1.100,000,000

25

25. (a) Fifteen hours represents 5 doubling periods (one doubling period is three hours).

100-2°=3200
(b) In 7 hours, there will be #/3 doubling periods. The initial population is 100 , so the population y at
time  is y=100-2"" |
20/3
(¢) t=20=y=100-2  =~10, 159
/3
(d) We graph y 1=100- 2" and y2=50 , 000 . The two curves intersect at x~26.9 , so the population

reaches 50 , 000 in about 26.9 hours.

60,000

40

2
(b) In 7 hours, there will be #/15 half-life periods. The initial mass is 2 g, so the mass y at time 7 is

1 \ 15
y=2. ( > > .

(c) 4 days =4-24=96 hours. r=96= y=2- <
(d) y=0.01=t~114.7 hours

1
26. (a) Sixty hours represents 4 half-life periods. 2- ( = > =3 &

96/15
> ~0.024 g

N =

0.02

N
i .

27. An exponential model is
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-12
y=abt , where a=3.154832569x 10  and b=1.017764706 . This model gives y(1993)~ 5498 million
and y(2010)~ 7417 million.

8000 (millions)

1940

0

-9
28. An exponential model is y=abt , where a=1.9976760197589x 10  and »=1.0129334321697 . This
model gives y(1925)~ 111 million, y(2010)~2 330 million, and y(2020)~z 375 million.

400 (millions)

1890
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1. (a) See Definition 1.
(b) It must pass the Horizontal Line Test.

_ ,1 _
2.(a) f 1(y)=x<:> Jf(x)=y for any y in B . The domain of f 1is B and the range of f : iISA.
(b) See the steps in (5).
(c) Reflect the graph of f about the line y=x .
3. f is not one-to-one because 2#6 , but f(2)=2.0=f(6) .

4. f is one-to-one since for any two different domain values, there are different range values.

5. No horizontal line intersects the graph of f more than once. Thus, by the Horizontal Line Test, f is
one-to-one.

6. The horizontal line y=0 (the x —axis) intersects the graph of f in more than one point. Thus, by the
Horizontal Line Test, f is not one-to-one.

7. The horizontal line y=0 (the x —axis) intersects the graph of f in more than one point. Thus, by the
Horizontal Line Test, f is not one-to-one.

8. No horizontal line intersects the graph of f more than once. Thus, by the Horizontal Line Test, f is
one-to-one.

1 1
9. The graph of f(x)= 5 (x+5) is a line with slope = . It passes the Horizontal Line Test, so f is one-

2
to-one.

. - 1 1 i
Algebraic solution : If xl;éxz , then x1+57éx2+5$ > <x1+5)7é > <x2+5) if(xl);éf(xz) ,s0 fis
one-to-one.

2. : : b 4 :
10. The graph of f(x)=1+4x-x 1is a parabola with axis of symmetry x=- = Tl) =2 . Pick any x

—values equidistant from 2 to find two equal function values. For example, f(1)=4 and f(3)=4 ,so f
isnot1—-1.

11. g(x)=|x| = g(-1)=1=g(1) , so g is not one-to—one.

12. X\ FX,= \/xil;é\/xizég(ﬂ);ég(xz) ,so0gis1 1.

13. A football will attain every height 4 up to its maximum height twice: once on the way up, and
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again on the way down. Thus, even if # does notequal¢_, f(¢, ) may equal f(7 ) ,so fisnot1 -1
1 2 1 2

14. f isnot 1 — 1 because eventually we all stop growing and therefore, there are two times at which
we have the same height.

15. f does not pass the Horizontal Line Test, so f isnot 1 — 1 .

4

=
T

~4

16. f passes the Horizontal Line Test,
sofisl—1.

-1
17. Since f(2)=9 and fis 1 - 1 , we know that f (9)=2 . Remember, if the point (2,9) is on the
-1
graph of f , then the point (9,2) is on the graph of f .

18. (a) First, we must determine x such that f(x)=3 . By inspection, we see that if x=0 , then f(x)=3.
-1
Since fis 1 — 1 ( f is an increasing function), it has an inverse, and f (3)=0 .

-1
(b) By the second cancellation equation in (4), we have f ( f (5))=5 .

19. First, we must determine x such that g(x)=4 . By inspection, we see that if x=0 , then g(x)=4 .

-1
Since g is 1 — 1 ( g is an increasing function), it has an inverse, and g (4)=0 .

20.(a) fis 1 -1 because it passes the Horizontal Line Test.

-1 -1
(b) Domain of f=[-3,3]=Range of f .Range of f=[-2,2]= Domain of f .
() Since f( 2)=1, f (1)=2 .

21. We solve
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5 9 9
=5 (F-32) for F : 3 C=F-32=F= 3 C+32 . This gives us a formula for the inverse function, that

is, the Fahrenheit temperature F as a function of the Celsius temperature C . F'> -459.67=

% C+32>-459.67= % C>-491.67=C>-273.15, the domain of the inverse function.

[\

2 2
m 2 m 2 m m

0 v 0 2 2 0
Lm=———=1==—====1"—=v= | 1-—
> > 2 2 2 2 2

1-v /e c m c m m

. S . . -1
formula gives us the speed v of the particle in terms of its mass m , thatis, v=f (m) .

(=)
<

2 2 1 2 10
23. f(x)=\l 10-3x= y=\l 10-3x (yz 0)=y =10-3x=3x=10-y = x= 3 + 3 - Interchange x and y

Dy= :15 ’ 10 .So f (x)— 2 %) . Note that the domain of f_l isx>0.

24. f(x)= ;j:_l = y= % = y(2x+3)=4x-1 = 2xy+3y=4x-1 = 3y+1=4x2xy = 3y+1=(42y)x=
x= Z{;}l) . Interchange x and y : y= :Z;lc .

So f ()= zx; .

3 3

3
25. f(x)=ex = y=ex =In y=x :>x=—\3lln y . Interchange x and y : y=—\3lln X .

So f (x)=ynx .

,3 73

26. y=f(x)=2x3+3:> y—3=2x3:> y? =x3:> x:—‘3 / y? .
3 x3 , X—

Interchange x and y : y= 7 So f (x) : =

27. y=In (x+3) = x+3=¢' = x=¢'-3 . Interchange x and y : y=ex—3 . So f_l(x)=ex—3 :

UJ

X
8. y_lL =y ye 1+€ :>y—1—ye +e :>y_1 e (y+1)
le
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x-1

L S (e A NI
e =3 = x=In <y+1 > . Interchange x and y : y=In (x+1 > .So f (x)=In ( > .

x+1
-1
Note that the domain of f is |x|>1 .

2 2 2 2
29. y=f(x)=1- 2 = 1-y= 2 =x=7—"=x=| 7 ,since x>0 . Interchange x and y : y=1 7
2 2 Iy I-y I-x
X X
-1 , 2
.So f ()= -

2 2 2 2 2
30. y=f(x)=\ x +2x , x>0=y>0 and y =x +2x=x +2x-y =0 . Now we use the quadratic formula:

Zi'\/ 2 4.1 ()
= 21

2 -1 ’ 2
andy : y="1+\ 1+x .Sof (x)="1+\1+x ,x>0.

, 2
=-1+7\ 1+y .But x>0, so the negative root is inadmissible. Interchange x

o - * 3

31. The function f is one-to-one, so its inverse exists and the graph of its inverse can be obtained by
reflecting the graph of f about the line y=x .

y
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32. The function f is one-to-one, so its inverse exists and the graph of its inverse can be obtained by
reflecting the graph of f about the line y=x . For the graph of 1/f , the y —coordinates are simply the

1
reciprocals of f . For example, if f(5)=9, then 1/f(5)= 9 - If we draw the horizontal line y=1, we see

that the only place where the graphs intersect is on that line.
y

i/
Fy

33. (a) It is defined as the inverse of the exponential function with base a , that is, log ax=y<:> a=x .

(b) (0,00)
(¢c) R
(d) See Figure .

34. (a) The natural logarithm is the logarithm with base e , denoted In x .

(b) The common logarithm is the logarithm with base 10 , denoted log x .
(c) See Figure .

35.(a) log 264=6 since 26=64 .

1 2 1
(b) log 6 3_6 =-2since 6 = 3_6 .

1 3
36. (a) log 2=7 since 8= .
2
(b) In e‘r=\I§
2
37.(a) log | 1.25+log  80=log 10(1.25- 80)=log 1o100=log | 10°=2

3 200 2
(b) log 10+log 20-3log 2=log 5(10- 20)-log 2 =log 'y =log 25=log 5 =2
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log 3+log .5 log 15 log . 3+log .5 log .3 log.5
38. (a) 2( ’ 2)=2 ’ =15[0r'2( ’ 2)=2 *.2 7=3.5=15]

3
3In2 In(2 In 8 3In2 In2
) M2 P g [ o (M) s

39.2In4-1n 2=In 4271n 2=In 16-In 2=In 1—26 =In§

b b b
40. In x+aln y-bln z=In x+ln y"-In z =In (x- y')-In z =In (xy /z )

2
2. 1 2 12 2 1+
41.In (14+x )+ = In x—In sin x=In (1+x )+In x —In sin x=In [(1+x )\l; ]-In sin x=In ME

2 sin x
In 10
42. (a) log 10= m ~0.926628
In 8.4
(b) log 8 4= ﬁ ~3.070389

nx In x
=l and log 50"~ 50 . These graphs all approach
00 as x— 0" , and they all pass through the point (1,0) . Also, they are all increasing, and all
approach co as x— oo . The functions with larger bases increase extremely slowly, and the ones with
smaller bases do so somewhat more quickly. The functions with large bases approach the y— axis

43. To graph these functions, we use log .

+
more closely as x—0 .
y=log,sx

44. We see that the graph of In x is the reflection of the graph of ¢ about the line y=x , and that the
graph of log 1" is the reflection of the graph of 10" about the same line. The graph of 10" increases

more quickly than that of ¢" . Also note that log 1 O as Xx— 00 more slowly than In x .
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7 R
}"f ’/
1/
y=Inx

- S o )=
. - y=log,x

6
45. 3 ft =36 in, so we need x such that log 2)c=36<:>x=23 =68, 719,476, 736 . In miles, this is

Ift Imi
68,719,476,736111°12in'5280ft

~1,084 ,587.7 mi.

1x10™

7710"

From the graphs, we see that f (x)=x0'1>g(x)=ln x for approximately 0<x<3.06 , and then g(x)>f(x)

15
for 3.06<x<3.43x10 (approximately). At that point, the graph of f finally surpasses the graph of g
for good.

47. (a) Shift the graph of y=log " five units to the left to obtain the graph of y=log . 0(x+5) . Note the
vertical asymptote of x=-5 .
y=log 1




Stewart Calculus ET 5e 0534393217, 1. Functions and Models; 1.6 Inverse Functions and Logarithms

y=log . 0(x+5)

y

—5§,fi 0

(b) Reflect the graph of y=In x about the x —axis to obtain the graph of y=-In x .
y=In x

/

0(1 x

48. (a) Reflect the graph of y=In x about the y —axis to obtain the graph of y=In (-x) .
y=In x
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—1 0 x

(b) Reflect the portion of the graph of y=In x to
the right of the y —axis about the y —axis. The
graph of y=In | x| is that reflection in addition
to the original portion.

y=In x

1 172
49. (a) 2Inx=1= Inx=7 = a=e =ye

() ¢ =5= x=In5= x=1In5

2x+3 2x+3 1
50.(a) e T=0= e =7= 2x+3=In7 = 2x=In7 3 = x= 5 (n7-3)

B B 1 B
(b) In (5-2x)=3 = 5 2x=e = 2x=5-¢ = x= 5 Ge .

51. (a) 2" =3¢ log 3=x 5ex=S+log 3.
x5 x-5 In3 In3
0r: 2 =361 (2°°) =In 35 (x-5)ln 2=In 3¢5 x-5= T easSe

(b) In x+In (x D=In (x(x 1))=1<x(x 1)=¢ <>x  x e=0 . The quadratic formula (with a=1 , b="1 ,

1
and c=-¢ ) gives x= 5 (li 1+4e ) , but we reject the negative root since the natural logarithm is not

defined for x<0 . So x= % (1+\I 1+4e) .
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In (1 1 1 1
52.(a) In(Inx)=1<e n(M):e &ln x=e =e&e nx=ee<:>x=e

e
b. b. b.
() ¢“=Ce =lIne"=In[Cle )] ax=In C+bx+ln e < ax=In C+bx< ax—bx=In C = (a b)x=In C=
= ab
53.(a) ¢'<10= Ine <lIn 10 = x<In 10 = x& (-co0,In 10)

Inx -1 -1
() Inx>1=e >e = x>e = xc (1/e,00)

29

Inx 9 2 9
<e = e<x<e = xcle,e

54.(a) 2<In x<9 = ¢ <e

2-3 2-3 1 1
() ¢ >d=1Ine >nd=23x>nd= 3x>Ind 2= x< 3 (n4-2)= xe <oo .32 4)>

1
55. (a) For f()=\3 ¢, we musthave 3 ¢ > 0= ¢ <3 = 2x<In3 = x< SIn3.

1
Thus, the domain of f is (-0, 5 In 3] .

2 2 2 2 2 2 1 2
() y=f(x)=\3-¢ " [notethat y>0]=y =3¢ =e =3-y = 2x=ln 3y )= x= SInGy).
1 2 -1 1 2 -1
Interchange x and y : y= 5 In(3x).So f (x)=§ In (3-x ) . For the domain of f , we must have

3x>0= x'<3= Ixk<y3 = 3 <x<y3 = 0< x<y[3 since x>0 . Note that the domain of ', [03),
equals the range of f .

56. (a) For f(x)=In (2+In x) , we must have 2+In x>0=-In x> 2= x>e—2 . Thus, the domain of f is
-2
(e ,0).
y X

(b) y=f(x)=In (2+In x) = ¢'=2+In x = In x=¢’ -2 = x=¢ ? . Interchange x and y : y=ee 2 .So

-1 =) -1
f (x)=ee . The domain of f , as well as the range of f ,is R .

, 3 2 , 3 2
57. We see that the graph of y=f(x)=" x +x +x+1 is increasing, so f is 1 — 1 . Enter x="\ y +y +y+1

and use your CAS to solve the equation for y . Using Derive, we get two (irrelevant) solutions
involving imaginary expressions, as well as one which can be simplified to the following:

3
- 4 (3 3
y=f ()= 36E (1/ D 27x+20 —'\/ D+27x°20 +§\[§)




Stewart Calculus ET 5e 0534393217, 1. Functions and Models; 1.6 Inverse Functions and Logarithms

L .

-1

4 2
where D=3\[§ '\/ 27x -40x +16 . Maple and Mathematica each give two complex expressions and one
real expression, and the real expression is equivalent to that given by Derive. For example, Maple’s

2/3 1/3
1 -8 2 2 4
expression simplifies to 6 M 38 33M , where M=108x +12'\/48120x +81x —80.
2M

6 4 3
58. (a) If we use Derive, then solving x=y +y for y gives us six solutions of the form y=+ 33[ \I B-1

here Be 4 2sin 2 2¢in [ 24Z ). 2 Az da=sin (222 n
, where B¢ sin = .2sin T +73 ), 2cos (T 4+T and A=sin 5 . The

. 6 4 , 3 , , A 7 :
inverse for y=x +x (x>0)is y= 3 \I B-1 with B=2sin < 3 + 3 ) , but because the domain of A

. 4 . .. . 4
1S |:O, 77 :I , this expression is only valid for x& |:O, 77 ] .

6 4
Happily, Maple gives us the rest of the solution! We solve x=y +y for y to get the two real solutions
1/3( 23 13
{6 \/ c(c? 2c"14)
=76

1/3
C

6 4
, where C =108x+12\ﬁ \Ix(27x—4) , and the inverse for y=x +x (

x>0 ) is the positive solution, whose domain is I: 2—7 ,00 > .

Mathematica also gives two real solutions, equivalent to those of Maple. The positive one is

% (E\IZ D1/3+2§\I§ D71/372) , where D=72+27x+3\l§ \I; \I 27x-4 . Although this expression also has

4
domain I: 5790 > , Mathematica is mysteriously able to plot the solution for all x>0 .

(b)
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0

100 100 3

In (n/100
write this as #=3- % . This function tells us how long it will take to obtain n bacteria (given

t
59. (a) n=100. 2t/3:> N =2t/3:>10g , ( n >= = =rt=3log 5 ( ﬁ) > . Using formula ( ), we can

the number n ).

50,000 In 500
(b) n=50 , 000 r=3log , === =3log ;500=3 ( Iin >

> ~26.9 hours

a
0 0 0

gives us the time ¢ necessary to obtain a given charge Q .

(b) 0=0.9Q  and a=2= r="2In ( 1—0.9(Q 0/QO) >=—21n 0.1224.6 seconds.

60. (a) Q:Qo(l_e"’“) N QQ I LT A <1 9 > = 1=—aln (1-Q/Q,) . This

61. (a) To find the equation of the graph that results from shifting the graph of y=In x3 units upward,
we add 3 to the original function to get y=In x+3 .

(b) To find the equation of the graph that results from shifting the graph of y=In x3 units to the left,
we replace x with x+3 in the original function to get y=In (x+3) .

(c¢) To find the equation of the graph that results from reflecting the graph of y=In x about the x —axis,
we multiply the original equation by 1 to get y=-In x .

(d) To find the equation of the graph that results from reflecting the graph of y=In x about the y —axis,
we replace x with —x in the original equation to get y=In (-x) .

(e) To find the equation of the graph that results from reflecting the graph of y=In x about the line y=x

, we interchange x and y in the original equation to get x=In y< y=ex .
(f) To find the equation of the graph that results from reflecting the graph of y=In x about the x —axis

and then about the line y=x , we first multiply the original equation by ~1 and then interchange x and

y in this equation to get x=-In y< In y=—x& y=e7x .

(g) To find the equation of the graph that results from reflecting the graph of y=In x about the y —axis
and then about the line y=x , we first replace x with —x in the original equation and then interchange x

and y to get x=In (—y)¢>—y=ex<:> y=—ex .
(h) To find the equation of the graph that results from shifting the graph of y=In x3 units to the left
and then reflecting it about the line y=x , we first replace x with x+3 in the original equation and then
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interchange x and y in this equation to get x=In (y+3)< y+3=ex<:> y=exf3 .

62. (a) If the point (x,y) is on the graph of y=f(x) , then the point (x-c,y) is that point shifted ¢ units
-1
to the left. Since f is 1 — 1, the point (y,x) is on the graph of y=f (x) and the point corresponding to

-1
(x-c,y) on the graph of f is (y,x—c) on the graph of f . Thus, the curve’s reflection is shifted down
the same number of units as the curve itself is shifted to the left. So an expression for the inverse

-1 -1
functionis g (x)=f (x)-—c.
(b) If we compress (or stretch) a curve horizontally, the curve’s reflection in the line y=x is
compressed (or stretched) vertically by the same factor. Using this geometric principle, we see that

the inverse of h(x)=f(cx) can be expressed as hﬁl(x)=( 1/c) fﬁl(x) .

- 3
63. (a) sin 1(£ >—z since sin Z_£ and — isin I:%,%] .

2 3 3

(b) cos _1(—1)=7T since cos 7=-1 and 77 isin [0,7] .

64 1)= Z & z =-1 and Z isi £z
. (a) arctan(—1)=- 1 since tan | — 1 )= and — 1 isin | — 205 )
(b) 712_2 : 2_2 dE fed (OE:IU 3_7T:|

csc 2= 6 since csc 6= an 5 is in 'S T, > .

3 3 3

by aresin (== Vo % sincesin (% Ve L and Z o] E T
(b) arcsin 7\5 =-7 sincesin { -7 _fﬁ and -7 isin | - =5 | .

-1 T, T T, T 31
66. (a) sec \I_=4 since sec 4—\I§ and 1 1S in |:0,2 >U|:7r, > > .
T
2

. T . o, . 7T
(b) arcsinl== sincesin —=land = isin | —

-1 T T T T

65. (a) tan \Ig— since tan — =43 and i1s in <— D) > .
T
4

2 2 2

67. (a) sin (sin _10.7)=O.7 since 0.7 isin [-1,1] .

-1 4 -1 T T T
(b) tan (tan 3 >=tan \I_=3 since 3 1S In |:2,

(SRS

|

2 2
68. (a) Let 9 =arctan2 , so tan 0 =2=-sec 0=I1+tan 0=1+4=5=sec O =ﬁ = sec (arctan2)=sec 0 =\I§

.(b) Let
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.15 , 5 15 2 5 \2 119
6 =sin 3 . Then sm@-13 , SO COS (2sm 3 >—cos28—1—2sm 9—1—2< 13> =169 -

-1 -1 2 2
69. Let y=sin x.Then - 7 <y< = =cos y>0,socos(sin x)=cos y=\l 1-sin y='\/ 1-x

(ORI
SR I|

.1 . . .1
70. Let y=sin x . Then sin y=x , so from the triangle we see that tan (sin x)=tan y=

1-x

-1 ) . -1 .
71. Let y=tan x . Then tan y=x , so from the triangle we see that sin (tan x)=sin y=

1+x

NIES™

y

72.

1 2
Let y=cos x .Then cos y=x=>sin y= \/ 1-x since 0< y<m . So

] 2
sin (2cos  x)=sin 2y=2sin ycos y=2x \/ I-x .
73.

£}

St

it

=]
I

}9

Ay =sinx
/

v

L]

-1
The graph of sin x is the reflection of the graph of sin x about the line y=x .

74.
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3 y=tanx

y=tan"lx

i
(S5
(L]

ys=tan"lx

\& J

= _z
y=tanx -3

-1
The graph of tan x is the reflection of the graph of tan x about the line y=x .

75.

g()=sin  (Gx+1).

[SSH B\

Domain (g)={xI-1<3x+1< 1} ={x1-2<3x<0} = { xl-

el [z
_y_2 - 2’2 .

76. (a) f(x)=sin (sin _lx)

o) L 39]

ORI

Range <g>={ y-

Since one function undoes what the other one does, we get the identity function, y=x , on the
restricted domain -1<x<1 .

(b) g(x)=sin ! (§in X)

s
2

A\ N
VRV VAR

This is similar to part (a), but with domain R . Equations for g on intervals of the form

v v . . n n+l .
< 5 +n, +7rn> , for any integer n , can be found using g(x)=(-1) x+(-1) nr . The sine

function is monotonic on each of these intervals, and hence, so is g (but in a linear fashion).
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1. (a) Using P (15,250) , we construct the following table:

t 0 slope=m PO
5 | (5,694) 6954__1255 0_ 41%4 = 44.4
10 | (10,444) 4‘1‘3?20 = 124 =38.8
20 | (20,111) 1;(1):?‘2_0 = 129 =27.8
25 | (25,28) 2285 21550 = 21202 =222
30 | (30,0) % - %) = 16.6

(b) Using the values of # that correspond to the points closest to P (#=10 and =20 ), we have

From the graph, we can estimate the slope of the tangent line at P to be

?5)00 1. approximate
600 graph of function
550 - approximate
500 tangent line

V {gallons)

400
350 I
250 300 N
200 l
L

i)
2.
2948-2530 418
(a) Slope = 136 " ¢
2948-2806 142
(¢) Slope = a0 - 2

=71

-38.8+(-27.8)

~69.67 (b) Slope =

(d)

> =333

29482661 287

-300 =
9 =33.3.

42-38

30802948 132

=7 =71.75

Slope ="

_2=66

From the data, we see that the patient’s heart rate is decreasing from 71 to 66 heartbeats / minute after
42 minutes. After being stable for a while, the patient’s heart rate is dropping.
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1
1)

3. (a) For the curve y=x/(1+x) and the point P (

X @) mPQ
) 0.5 (0.5,0.333333) 0.333333
(i1) 0.9 (0.9,0.473684) 0.263158
@ii) | 0.99 (0.99,0.497487) 0.251256
(iv) ]0.999 | (0.999,0.499750) | 0.250125
(V) 1.1 (1.5,06) 0.2
(vi) 1.5 (1.1,0.523810) 0.238095
(vii) | 1.01 (1.01,0.502488) 0.248756
(viii) | 1.001 | (1.001,0.500250) | 0.249875

1
(b) The slope appears to be -

() y-

274

(x-1) or y=

i

1.1
47T

4. For the curve y=Inx and the point P(2,In2) :

(a)
X 0 Mpo
(1) 1.5 (1.5,0.405465) 0.575364
(1) 1.9 (1.9,0.641854) 0.512933
(ii1) 1.99 (1.99,0.688135) 0.501254
(iv) 1.999 [ (1.999,0.692647) | 0.500125
(V) 2.5 (2.5,0.916291) 0.446287
(vi) 2.1 (2.1,0.741937) 0.487902
(vii) | 2.01 (2.01,0.698135) 0.498754
(viii) | 2.001 | (2.001,0.693647) | 0.499875
1
(b) The slope appears to be 5 .
1 1
(¢) y-In2= 5 (x2)ory== x-1+In2

(d)

2
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}‘
- secant line at v = L5
A .
(+ e tangent lineat x=2
LR secant line at x = 2.5
p Y
v=lny
24 .
1027 secant line )
atx =28~
045+ o
¢ secant line
“yeiny AXT 1.3
% +
0 Ls 2 2.5 X

5.(a) y=y(t)=40t716t2 CAt=2 y=40(2)716(2)2=16 . The average velocity between times 2 and 2+h
_Y@2+h)y(2) [40(2+h)716(2+h)2]716 3 724h716h2

ave  (2+h)2 h ok

(i) [2,2.5]:h=05, vave=f32 ft/s (i) [2,2.11:h=0.1, vave=725.6 ft/s

isv =24-16h , if h#0 .

(iii) [2.2.05]: h=0.05,v =248 ft/s (iv) [2.2.01]:h=0.01,v =24.161ft/s
ave ave

(b) The instantaneous velocity when =2 ( h approaches 0 ) is 24 ft/ s.

6. The average velocity between ¢ and 7+h seconds is

58(+h)-0.83(+h) —(58-0.83) 58K 1.6t 0.831°

=58-1.66t-0.83h if h#0 .

h h
(a) Here =1 , so the average velocity is 58-1.66-0.834=56.34-0.83/h .
(i) [1,2] : h=1,55.51m/s (i) [1,1.5] : h=0.5,55.925m/s
(ii) [1,1.1] : ~=0.1 ,56.257 m/s (iv) [1,1.01] : h=0.01,56.3317 m /s

(v) [1,1.001] : h=0.001 , 56.33917 m /s

(b) The instantaneous velocity after 1 second is 56.34 m / s.

7. (a)
@ [13]:h=2.v =2 f/s G [12]:h=l.v =2 ft
[ ’ ] - M= ’vave_ 6 t/s [ ) ] . = ,Vave—6 t/s

19 . 331
(iii) [1,1.5] :h=0.5,vave=2—4 ft/s (iv) [1,1.1] : h=0.1 Ve €00 ft/s

(b) As h approaches 0 , the velocity approaches
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(c)

GV
2+h)-s(2

8. Average velocity between times =2 and t=2+h is given by S(+T)S() .
(a)
VR _s(5)-s(2) 17832 146

h=3= VW 55 T 3 =3 ~48.71t/s
i) _s(@)-s(2) 11932 87

h=2= Ve 42 S 5 =5 =43.5ft/s

3)-s(2) 70-32

W oy =X 3)_;( ). 013 =38 ft /s

(b) Using the points (0.8,0) and (5,118) from the approximate tangent line, the instantaneous

. . 18-0
velocity at =2 is about ~28 ft/s.
5-0.8
$ ,(
150
100 e
/
50 y
"
0 1 3 4 t

9. For the curve y=sin (1077/x) and the point P (1,0) :

(a)

X Q mPQ
2 | (2,0) 0
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1.5 | (1.5,0.8660) 1.7321

1.4 ] (1.4,-0.4339) | -1.0847

1.3 ] (1.3,-0.8230) | -2.7433

1.2 | (1.2,0.8660) | 4.3301

1.1] (1.1,-0.2817) | -2.8173
X @) mPQ

0.5 ] (0.5,0) 0

0.6 | (0.6,0.8660) | —2.1651

0.7 ] (0.7,0.7818) | -2.6061

0.8 | (0.8,1) -5

0.9 | (0.9,-0.3420) | 3.4202

As x approaches 1 , the slopes do not appear to be approaching any particular value.
1

AR
I iATA)

We see that problems with estimation are caused by the frequent oscillations of the graph. The
tangent is so steep at P that we need to take x —values much closer to 1 in order to get accurate
estimates of its slope.

(¢) If we choose x=1.001 , then the point Q is (1.001,-0.0314) and My -31.3794 . If x=0.999 , then

Q is (0.999,0.0314) and m, Q=731.4422 . The average of these slopes is —31.4108 . So we estimate
that the slope of the tangent line at P is about -31.4 .
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1. As x approaches 2 , f(x) approaches 5 . [Or, the values of f(x) can be made as close to 5 as we like
by taking x sufficiently close to 2 (but x# 2 ).] Yes, the graph could have a hole at (2,5) and be
defined such that f(2)=3 .

2. As x approaches 1 from the left, f(x) approaches 3 ; and as x approaches 1 from the right, f(x)
approaches 7 . No, the limit does not exist because the left- and right-hand limits are different.

3.(a) lim f(x)=co means that the values of f(x) can be made arbitrarily large (as large as we please)
x—-3
by taking x sufficiently close to -3 (but not equal to -3 ).
(b) lim f(x)=-co means that the values of f(x) can be made arbitrarily large negative by taking x
+
x—4

sufficiently close to 4 through values larger than 4 .

4.(a) lim f(x)=3
x—0
(b) lim f(x)=4
x—3
(¢) lim f(x)=2
x— 3+

(d) lim f(x) does not exist because the limits in part (b) and part (c) are not equal.
x—3

(e) f(3)=3

5.(a) f(x)approaches 2 as x approaches 1 from the left, so lim f(x)=2 .

x—1

(b) f(x) approaches 3 as x approaches 1 from the right, so lim f(x)=3 .

+
x—1

(c) lim f(x) does not exist because the limits in part (a) and part (b) are not equal.
x—1

(d) f(x) approaches 4 as x approaches 5 from the left and from the right, so lim f(x)=4 .
x—=5
(e) f(5) is not defined, so it doesn’t exist.

6. (@) lim gx)=-1
x—-2
(b) lim g(x)=1
xX— 72Jr

(¢) lim g(x) doesn’t exist
x—-2

(d) g(-2)=1
(e) lim g(x)=1

x—2
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® lim g(x)=2
xX— 2+

(g) lim g(x) doesn’t exist

x—2

(h) g(2)=2

(i) lim g(x) doesn’t exist
x—>4+

() lim g(x)=2
x— 4

(k) g(0) doesn’t exist

@) lim g(x)=0

x—0

7. (@) lim g()=-1
-0
(b) lim g(r)=2
t—>0+

(c) lim g(r) does not exist because the limits in part (a) and part (b) are not equal.
t—0

@) lim g(r)=2
=2

(e) lim g(r)=0
t— 2+

(f) lim g(r) does not exist because the limits in part (d) and part (e) are not equal.
t—2

(8 s(2)=1
(h) lim g(1)=3

t—4

8.(a) lim R(x)=—oc0

x—2
(b) lim R(x)=00
x—5
(¢) lim R(x)=-0c0
x—-3
(d) lim R(x)=c0
x—>—3+

(e) The equations of the vertical asymptotes are x=-3 , x=2 , and x=5 .

9.(@) lim f(x)=o0
x——7
(b) lim f(x)=c0

x—-3

(c)
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lim f(x)=c0

x—0

(d) lim f(x)=-o00
x—6

(e) lim f(x)=c0
X— 6+

(f) The equations of the vertical asymptotes are x=-7 , x=-3 , x=0 , and x=6 .

10. lim f(#)=150 mg and lim f(#)=300 mg. These limits show that there is an abrupt change in the
+

t—>12
- (=12

amount of drug in the patient’s bloodstream at /=12 h. The left-hand limit represents the amount of
the drug just before the fourth injection. The right-hand limit represents the amount of the drug just
after the fourth injection.

11.

B + et

e J

—0.5

(@) lim f(x)=1

x—0

(b) lim f(x)=0

x—0

(¢) lim f(x) does not exist because the limits in part (a) and part (b) are not equal.
x—0

12. lim f(x) exists for all a except a=+1 .

X—>da

N ]

13. lim f(x)=4 , lim f(x)=2,

+
x—3 x—3
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lim f(x)=2, f3)=3, f(-2)=1

x—-2
¥

NN

......

s 0L 1 X

14. lim f()=1,lim f(x)=—1,lm fx)=0,lim f(x)=1, f2)=1, f(0) is undefined

x—0 x—0 x—2 x—2

el

)
15. For f(x)= 5— :
X -x2
X Jx)
25 0714286
21 |0.677419

2.05 ]0.672131
2.01 [0.667774
2.00510.667221
2.001{0.666778

X Sx)

1.9 ]0.655172
1.95 10.661017
1.99 [0.665552
1.99510.666110
1.99910.666556

X —2x - 2
=0.6= 3

It appears that lim
=2 x x2
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16. For f(x)=

2
X —2x

2

X —x2

Sx)

0

-0.5

-1

-0.9

-9

-0.95

-19

-0.99

-99

-0.999

-999

Sx)

-1.5

-1.1

11

-1.01

101

-1.001

1001

It appears that lim

17. For f(x)=

A

2

X
e -1l-x

S PAC))

1 0.718282

0.5 [0.594885

0.1 {0.517092

0.0510.508439

0.01{0.501671

X fx)

-1 [0.367879

2
X

. . - +
does not exist since f(x)— o0 as x—-1 and f(x)—> o0 asx—-1 .
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-0.5 [0.426123
-0.1 10.483742
-0.0510.491770
-0.01]0.498337

X
e —1-x

1
=0.5=7 .

It appears that lim >

x—0 X

18. For f(x)=xIn (x+x2) :

X S(x)

1 0.693147
0.5 |-0.143841
0.1 [-0.220727

0.05 [-0.147347
0.01 |-0.045952
0.005 [-0.026467
0.001 [-0.006907

2
It appears that lim xIn (x+x )=0 .

+
x—0

19. For f(x)= @ :

x| fx)

1 0.236068
0.5 |0.242641
0.1 10.248457
0.0510.249224
0.01]0.249844

o PACS)
-1 10.267949
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-0.5 [0.258343
-0.1 [0.251582
-0.0510.250786
-0.01{0.250156

+4 -2 1
It appears that lim jx_ =0.25=~ .

x—0 4
tan 3x
20. For f(x)= ansy
X fx)

+0.2  [0.439279
+0.1 0.566236
+0.05 [0.591893
+0.01 |0.599680
+0.0010.599997

tan 3 3
It appears that lim = x=0.6=— .
0 tan5x 5
°
x —
21. For f(x)= 0
x 1
xS
0.5 [0.985337
0.9 10.719397

0.95 [0.660186
0.99 10.612018
0.999 (0.601200

X fx)
1.5 0.183369
1.1 [0.484119

1.05 ]0.540783
1.01 0.588022
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1.00110.598800

21 3
It appears that lim =0.6=7 .
x—1 -1 5
X
X
95
22. For f(x)= P :
x Jf(x)
0.5 [1.527864
0.1 [0.711120

0.05 10.646496
0.01 0.599082
0.001 [0.588906

X fx)
-0.5 0.227761
-0.1 0.485984

-0.05 10.534447
-0.01 |0.576706
-0.00110.586669

X

It appears that lim

x—0

=0.59 . Later we will be able to show that the exact value is In (9/5) .

6
23.lim —= =oo since (x 5)—0 as x— 5 and —= >0 for x>5 .
+ X5 x5

X—

6 - 6
24.lim — =00 since (x-5)—0 as x—5 and — <0 for x<5 .

_ x5 x5
x—5
. X : . o :
25. lim =00 since the numerator is positive and the denominator approaches 0 through
=1 (x-1)

positive values as x— 1 .

26.
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1 2 -1
lim ——— = oo since x — 0 as x— 0 and ——— <0 for O<x<1 and for —2<x<0 .
=0 x (x+2) x (x+2)
27. lim ——— =00 since (x+2)—0 as x—2" and ——— <0 for -2<x<0 .
o 2" X (X42) x (x+2)

28. lim csc x=lim (1/sin x)=oco since sin x— 0 as x— 7 and sin x>0 for O<x<r .

X—>7T X—>7T

29. lim secx= lim (l/cosx)=oo since cos x— 0 as x— (-77/2) and cos x<0 for T<x< /2 .

x— (-7/2) x— (-7/2)

30. lim In (x 5)= oo since x 5—0 as x—5 .

x—5

31.(a) fO)=1/(x-1)

X J )

0.5 -1.14

0.9 -3.69

0.99 -33.7
0.999 ([-333.7
0.9999 ([-3333.7
0.99999 |-33, 333.7

X J )

L5 0.42

1.1 3.02

1.01 33.0
1.001 |333.0
1.0001 |[3333.0
1.00001 |33, 333.3

From these calculations, it seems that lim f(x)=-co and lim f(x)=c0 .

+
x—1 x—1

(b) If x is slightly smaller than 1 , then
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3 3
x —1 will be a negative number close to 0 , and the reciprocal of x —1 , that is, f(x) , will be a negative
number with large absolute value. So lim f(x)=-0c0 .

x—1

3
If x is slightly larger than 1 , then x —1 will be a small positive number, and its reciprocal, f(x) , will
be a large positive number. So lim f(x)=co .

+
x—1

(c) It appears from the graph of f that lim f(x)=-oc0 and lim f(x)=c0 .

.
x—1 x—1
1o .
OﬁL }2
—10 :
3. (a) y= —— = —— Theref " 2" | the denominat hes 0 , and
.a y— > = (.X*2)(X+1) . ererore, as x— or x— , € daenominator approac €S , dll

X -—x2
y>0 for x<-1 and for x>2 , so lim y=lim y=oc0 . Also, as x— ~1 orx—2 , the denominator
x—>—1+ x— 2+
approaches 0 and y<0 for -1<x<2 , so lim y=lim y=-o0 .

x—-1 x—2

(b) =
33. (a) Let h(x)=(14x)
X h(x)

-0.001 2.71964
-0.0001 |2.71842
-0.00001 |2.71830
-0.00000112.71828
0.000001 {2.71828
0.00001 |2.71827
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0.0001

2.71815

0.001

2.71692

1/
It appears that lim (1+x) ~~2.71828 , which is approximately e . In Section 7.4 we will see that the

x—0

value of the limit is exactly e .
6

\

! J

(b) -2

34. For the curve y=2 and the points P (0,1) and Q (x,2x) :
X 0 mPQ

0.1  |(0.1,1.0717735)  |0.71773
0.01 [(0.01,1.0069556) |0.69556

0.001 [(0.001,1.0006934) |0.69339

0.0001 | (0.0001,1.0000693) |0.69317
The slope appears to be about 0.693 .

35. (a)
x|SO

I ]0.998000
0.8 10.638259
0.6 10.358484
0.4 {0.158680
0.2 10.038851
0.1 {0.008928

0.0510.001465
It appears that lim f(x)=0 .

x—0
(b)
x f(x)
0.04 [ 0.000572
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0.02 |-0.000614
0.01 [-0.000907
0.005 [-0.000978
0.003 [-0.000993

0.001-0.001000
It appears that lim f(x)=-0.001 .

x—0
36. h(x)= 20 =
X
(a)
X h(x)

1.0 [0.55740773
0.5 ]0.37041992
0.1 10.33467209
0.05 [0.33366700
0.01 {0.33334667
0.00510.33333667

1
(b) It seems that lim A(x)= 3

x—=0

© |x h(x)

0.001 0.33333350
0.0005 10.33333344
0.0001 ]0.33333000
0.00005 10.33333600
0.00001 ]0.33300000

0.000001 {0.00000000

Here the values will vary from one calculator to another. Every calculator will eventually give
false values .

(d) As in part (c), when we take a small enough viewing rectangle we get incorrect output.
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1 0.4

-
|/

-1 1 ~0.1 0.1
04 04

—-5%x107° §x 107 —107° 1070

37. No matter how many times we zoom in toward the origin, the graphs of f(x)=sin (77/x) appear to

consist of almost-vertical lines. This indicates more and more frequent oscillations as x— 0 .
1.2 1.2

ANl
. (v

-~0.01 0.01 —0.0001 0.000

m, - 2 2+
38. lim m=lim ———— .Asv—-c ,\|[1l-v/c -0 ,and m— o0 .

voco voc \l lfvz/c2

39.

There appear to be vertical asymptotes of the curve y=tan (2sin x) at x~+0.90 and x~+2.24 . To
find the exact equations of these asymptotes, we note that the graph of the tangent function has
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_ T . T .
vertical asymptotes at x= 5 tn. Thus, we must have 2sin x= 5 7, or equivalently,

) T . . ) % i .
sinx=7+2n. Since -1<sin x<1 , we must have sin x=+ 1 and so x=+sin 1 (corresponding

to x~+0.90 ).

o o -1 7T 17T
Just as 150 1is the reference angle for 30 , 7—sin 1 is the reference angle for sin 1 So

17
x=* <7rsin 1 > are also equations of the vertical asymptotes (corresponding to x~ +2.24 ).

40. (@) Let y=(x"1) /({x-1) .
x|y

099 |5.92531
0.999 |5.99250
0.99995.99925
101 [6.07531
1.001 |6.00750
1.0001 [6.00075

6.6

N

4
Q yv=065
_ X3 -1
&1
p y=55
07 L 13

5.4
From the table and the graph, we guess that the limit of y as x approaches 11is 6 .

3
x -1

(b) We need to have 5.5< <6.5 . From the graph we obtain the approximate points of

x—1
intersection P (0.9313853,5.5) and Q (1.0649004,6.5) . Now 1-0.9313853~0.0686 and
1.0649004-1~0.0649 , so by requiring that x be within 0.0649 of 1 , we ensure that y is within 0.5 of
6.
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1. (a)
lim [ f(x)+h(x)] =lim f(x)+lim A(x)

=-3+48=5

(b) lim [f(x)]2=[1im f(x)]2=(3)2=9

() lim 3 h(x)=§\/ lim h(x) =3(8=2
@i f(lx) " lim 1f(x) -5=3
lim £
(e) lim ﬁg = im h(x) =__83 B g
lim g(x)
o, im0
(g) The limit docics_> naot exist, since lim g(x)=0 but lim f(x)#0 .
25 ATy 6
) lim e 0 ~ fim k(o) lim f(x) 8 (3) 11

2. (a) lim [f(x)+g(x)]=lim f(x)+lim g(x)=2+0=2

x—2 x—2 x—2

(b) lim g(x) does not exist since its left- and right-hand limits are not equal, so the given limit does
x—1
not exist.
(¢) lim [f(x)g(x)]=lim f(x)-lim g(x)=0-1.3=0
x—0 x—0 x—0
(d) Since lim g(x)=0 and g is in the denominator, but lim f(x)=-1+#0 , the given limit does not
x—-1 x— -1
exist.
. 3 . 3 . 3
(e) lim x f(x)=| lim x lim f(x)|=2-2=16
x—2 x—2 x—2
(f) lim y3+f(x)=_[3+lim f(x)=y3+1=2
x—1 x—1




Stewart Calculus ET 5e 0534393217;2. Limits and Derivatives; 2.3 Calculating Limits Using the Limit Laws

4 2 4 2
lim (3x +2x —x+1) =lim 3x +lim 2x -lim x+lim 1 [Limit Laws 1 and 2]
x— -2 x—-2 x—-2 Xx—>-2 x--2

=3lim x +2lim x*lim x+lim 1 [3]

x—-2 x—-2 x—-2 x—-2
=3(2)+2( 2 (2)(1) [9, 8, and 7]
=48+8+2+1=59

4.
) lim (25%1)
lim ix L - [Limit Law 5]
=2 x +6x4  lim (x +6xf4)
x—2
) 2 .,
2lim x +lim 1
_ x;z 12 [2, 1, and 3]
lim x +6lim x-lim 4
x—2 x—2 x-2
2
:%:%:3 [9,7,and8]
(2) +6(2)-4
5.
. 2 3 . 2 . 3
lim (x -4)(x +5x-1) =lim (x —4)-lim (x +5x-1) [Limit Law 4]
x—=3 x—3 x—3
=<lim £ —lim 4>. <lim X 45lim x-lim 1) 2. 1, and 3]
x—3 x—3 x—3 x—3 x-3
—(3*4)-(345-3 1) (7,8, and 9]
=5-41=205
6.
2 3 5 2 3 5
lim (¢ +1) (#++3) =lim (¢ +1) -lim (+3) [Limit Law 4]
t—-1 t—-1 t—-1

- [ lim (z2+1)} ’ [lim (r+3)] > 6]
t——1 t—-1
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o2 3. . 5
=|:11m t +lim 1i| -[llm t+lim 3:| [1]

r—-1 t—-1 t—»-1 t—-1

=[ (—1)2+1] 3- [-1+3] 5:8. 32=256 [9, 7, and 8]

7.

: 1+3x 3 : 1+3x 3
lim (( ———— ) =(lim ————
=1\ 14+4x +3x =1 14+4x +3x

lim (1+43x) 3
x—1

2 4
lim (1+4x +3x )
| x>

lim 14+3lim x 3
x—1 x—1

) ) 2 .
lim 1+4lim x +3lim x
[ x> x—1 x—1

=‘ 1+3(1) }3=[§]3=
1) 3 8

lim \/ i +3u+6 lim \u +3u+6) [11]

u—-2 ‘\/u—> -2

lim u +311m u+lim 6 [1, 2, and 3]
u—-2 u—-2 u—>-2

[9, 8, and 7]

I

‘:3
+
U-)
+
(@)

(-2
6-6+6 \Il_6 =4

0.
lim 16fx2 =_ [ lim (16—x) [11]
x—4 x4

2
= lim 16-lim x [2]
x—4 x4

(3)

ol

[2, 1, and 3]

[7, 8, and 9]
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_ 16—(4)2=O [7 and 9]

10. (a) The left-hand side of the equation is not defined for x=2 , but the right-hand side is.
(b) Since the equation holds for all x#2 , it follows that both sides of the equation approach the same

limit as x— 2 , just as in Example 3. Remember that in finding lim f(x) , we never consider x=a .
X—>a

2
6 3)(x2
1 tim 220y S D L 43)=043=5
x—>2 )C_2 x—>2 )C_2 x—>2
X5k (kD) x4l 441 33
12. lim = wer ey AL -

= lim = l1im = = =
x— 4 x +3x-4 1= -4 (X+4)(X*1) X —4 x-1 —4-1 -5 5

2
—x+6
13. lim al xx2 does not exist since x-2— 0 but x2—x+6—> 8asx—2.
x—?2 7
° 4 (x-4) 4 4
X —4aX X(Xx— X
14. lim -lim ————— —lim — = — =—

iod 2 3pd a—d D) =x_)4 x+l 4+1 5

2
15. lim r9 —lim (1+3)(@-3) —lim -3 _ -3-3 _ -6
e S emes tos QIEDH3) Ty 241 T 2( 3

2
x —4x

16. lim
-1 x 3x4

. ) 2 2
does not exist since x -3x4—0butx 4x—»5asx—-1.

2 2 2
4+h) -1 1 h+h )1 h+h h(8+h
17.1im D16 (6x8hth )16 Bt B (8+h)=840=8
h—0 h h—0 h h—0 h h—0 h h—0
3 2 2 2
Coox-1 . (x1) (x +x+1) . xA4x+l T+1+1 3
18. lim —— =lim = — _2
il 2] w1 DD w1 X+l I+1 2

19.
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(et (eaneer™ean ) 0 aneehean’sn’
Iim — =lim =lim
h—0 h h—0 h h—0 h
2 3
h(4+6h+4h"+h
Cim AORER ) e (aveheanen’) =4+0+0+0=4
h—0 h h—0
20.
Q8 . (8+12ne6h’ k)-8 . 12h+6h’+h
lim 2 fim im ——
h—0 h h—0 h h—0 h

—tim (12+6h+h7) =1240+0=12
h—0

_—f_. 3+\l_) 3- \I_
21. lim == T =lim - =lim (3+7 )=3+9=6

22.
]ll"'h 1 I+h -1 1+h+1= lim (1+h)-1 _ lim h
h—>0 h—>0 h m+l h—0 h(m+l) h—0 h(m+l)

S S —
hoo Y1+h+l 141 2
23.
i x+2-3 i x+2 3 x+2+3=im (x+2)-9
g X7 7 X m+3 =7 (x-7) (m+3)
—lim x 7 “lim ——— = =1
w7 (7) (Yx4243) <7 Yx+243 9+3 6
24.
4 2
lim 10 Ly 2 (x2) (¥'+4) Sim (x+2) (x%4+4)=lim (x+2)lim (x+4)
x—2 x-2 x—2 x-2 x—2 x—2 x—2

=(242) (2°44)=32

25.
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x+4 . 1 1 1

2 2
11 ot ¢ 1
26. lim <——— >=1im (+—)—lim :
t 2 2

=lim — =— =1
0 t(r H) o tt+l) o t+1 0+l

_ = -3 3 9)
o X 81 i (x9) (x+9) lim (\I_ )(\I;+ )(x+9) |:
x—9

x-3 x—9 'J;_?’ _x—>9 'J_ -3
.J_

factor x-9 as a :I
=lim [ ({x+3)(x+9)]=({9+3) (9+9)=6- 18=108
x—9

difference of squares

28.
1 11
g S 3 Lo 33 3Bk
o o E T T ChGe)3 Ty h(3+h)3
[ 1 ] 1 1 1
lim | -==— |= - = = <
oL 3G+ I7 Tim [3G+] 7 3G+0)” 9
29,

t+1(1+ 1+t) =tin0t 1+t(1+ 1+t)
~1

:1' = =

o Lt (1+y 1+ ) 140 (14140 )

11 [Tw . )
im ( __> i 1—f 141 . (1 1+t)(1+ 1+t) _ t
t\IIH t (-0 t\ll‘” 10

-1

1
2

lim X—Xx im M:ﬁ \I_ 1- \I_) 1+ x+x
x—1 lf'J; x—1 1*4;

x—1 1*4;

=lim [yx (1+yx+x)]=lim [10+1+1)]=3
x—1 x—1

[difference of cubes]

Another method: We >’add and subtract’” 1 in the numerator, and then split up the fraction
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—lim | 1+ ‘I_ ‘I_) L) (1T ) (141)=
RS } (1T

31. (a) ~0.5
X

(SR B\

A
(b)

x Jx)
-0.001 0.6661663
-0.0001 [0.6666167
-0.00001 [0.6666617
—0.000001 [0.6666662
0.00000110.6666672
0.00001 ]0.6666717
0.0001 ]0.6667167

0.001 0.6671663

2
The limit appears to be 3
(c)

- ( X '\Il+3x+1> 1[1+3x+1 x(]l1+3x+1)
I1+3x-1 \Il+3x+1 x—>0 3x

x—0 x—>0

[E—
—

m (\/ 1+3x+1) [Limit Law 3]

x—=0

lim (1+3x)+lim 1 [1and 11]
x—0 x—0

<\/1im 1+3lim x+1> [1,3, and 7]

Wl— Wl Wil=—=

x—0 x—=0
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[7 and 8]

({T550+1)

2
(1+D)=73

Wil W=

32.(a)

lim
x—0

(b)

X

0

AEEES ENYS

X

J)

-0.001

0.2886992

-0.0001

0.2886775

-0.00001

0.2886754

-0.000001

0.2886752

0.000001

0.2886751

0.00001

0.2886749

0.0001

0.2886727

0.001

0.2886511

The limit appears to be approximately 0.2887 .

(c)

lim
x—0

(

Y3+x 3 3+x+3 L _G3 1
X V3+x+3 / xo0 x(Y3+x+y3) xoo0 Y3+x+y3
lim 1
x—=0
= Limit Laws 5 and 1
lim y3+x+im |3 [Limit Laws 5 and 1]
x—0 x—0
1
lim (3+x) +3 [7 and 11]
x—0
1
= [1,7, and 8]
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1

2 2 2 2 2 2
33. Let f(x)=—x , g(x)=x cos 20rx and h(x)=x .Then -1<cos 20mx< 1= -x <x cos 20mx<x =
J0)< g(x)< h(x) . Sosince lim f(x)=lim h(x)=0 , by the Squeeze Theorem we have lim g(x)=0 .

x—0 x—0 x—0

34. Let f(x)= \/ x3+x2 , g(x)= \/ x3+x2 sin (77/x) , and h(x)= x3+x2 . Then -1<sin (7/x)<1 =
\/ Xax < \/ Xo4xsin (/)< \/ 4 = f(x)< g0)< h(x) . So since lim f(x)=lim h(x)=0 , by the

x—0 x—=0

Squeeze Theorem we have lim g(x)=0 .
x—=0

2
35. 1< f(x)<x +2x+2 for all x . Now lim 1=1 and

x—-1

2 2 2
lim (x +2x+2)=lim x +2lim x+lim 2=(-1) +2(-1)+2=1 . Therefore, by the Squeeze Theorem,
x—-1 x—-1 x—>-1 x--1
lim f(x)=1 .

x—-1

3 3 3 3
36. 3x< f(x)<x +2 for 0< x<2.Now lim 3x=3 and lim (x +2)=lim x +lim 2=1 +2=3 . Therefore,

x—1 x—1 x—1 x—1

by the Squeeze Theorem, lim f(x)=3 .

x—1

4 4 4 4 4
37.-1<cos 2/x)<1=-x <x cos (2/x)< x . Since lim (—x )=O and lim x =0, we have

x—0 x—0
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4
lim [x cos (2/x)] =0 by the Squeeze Theorem.

x—=0

1

-1 in (7r/ in (7r/
38 1<sin ()< 1=e <e V< = xle<yx e V<X e . Since lim (yx/e)=0 and
+

x—=0
i /
lim (\I; e)=0 , we have lim [\l; e () ]=O by the Squeeze Theorem.
X— 0+ xX— 0+
39. If x>-4 , then |x+4|=x+4 , so lim |x+4|=1lim (x+4)=-4+4=0.
xX— 74+ x— 74+
If x<-4, then |x+4|=(x+4) , so lim |x+4|=lim —(x+4)=-(-4+4)=0.
x4 x4
Since the right and left limits are equal, lim |x+4|=0 .
x——4
+4 —(x+4
40, TF x< 4 . then |x+d]=(x+4) s fim 22 Cpm 0y =
x4 _ x+4 _
x— 4 x——4 x——4
o lx2l o ox2
41.1f x>2 , then |x-2|=x2,s0 lim —— =lim —= =lim 1=1.If x<2 , then |x2|=-(x2) , so
+ X2 + X2 +
x—2 x—2 x—2
) (x2 2
lim M =lim M =lim -1=-1 . The right and left limits are different, so lim u does not
_ X2 ~ox2 - o X2
x—2 x—2 x—2
exist.
3 263 23 (2x-3)
, X -3x x 3x x(2x— ,
42. If x> 5 then |2x-3|=2x3,so lim =T lim =i im T3 T lim +x—l.S JIf
x—1.5 x—1.5 x—=1.5 x—=1.5
2 2
3 _ 2x 3x . 2x 3x . x(2x-3) .
X< then |[2x-3|=3-2x,so lim T3 im T2 3) " im (2 3) =lim _,x_,1.5 . The
x—1.5 x—1.5 x—=1.5 x—1.5
2
) .. . ) 2x 3x )
right and left limits are different, so lim does not exist.
x—1.5 |2)C_3|
. ) 1 1 ) 1 1 o2 .
43. Since |x|=x for x<0,wehavelim | — -+ )=lim { — - — )=lim - , which does not
S\ x| \x x X
X— X— X—

exist since the denominator approaches 0 and the numerator does not.
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1 1 1 1
44. Since | x|=x for x>0 , we have lim < - - — ):lim < -—- ):lim 0=0.
A x| A XX "

x—0 x—0 x—=0
Q X
45. (a)
(b)
(1)  Since sgnx=1 for x>0, lim sgnx=lim 1=1 .
X— 0+ X— O+

(1) Since sgnx=-1 for x<0 , lim sgnx=lim -1=-1 .

x—0 x—0

(111) Since lim sgnx+#lim sgnx , lim sgnx does not exist.

x—=0 X— 0+ x—0

(iv) Since |sgnx|=1 for x#0 , lim |[sgnx|=lim 1=1 .

x—=0 x—0
46. (a)
. 2 2
lim ] (X)) =lim (4—x ) =lim 4-lim x
x—2 x—2 x—2  x—2

—4 4=0

lim f(x) =lim (x-1)=lim x-lim 1
xX— 2+ X— 2+ x—2 x—2

=2-1=1

(b) No, lim f(x) does not exist since lim f(x)=lim f(x) .

x—2
\/,
2 X

x—2 x—2

(c) '

47. (a)
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2 2
x -1 x -1
1) lim =slim — =lim (x+1)=2
() + |X—1| + x-1 +( )
x—1 x—1 x—1
2 2
e 1 x -1 x -1
(ii) hm_ 1] —hm_ Py —hm_—(x+1)——2
x—1 x—1 x—1

(b) No, lim F(x) does not exist since lim F(x)#lim F(x) .

x=1 xX— 1+ x—1
(c) ; /
\ 0,
1 X
N
48. (a)
W Jim A(o)=lim x’=0°=0
xX— O+ X— O+
(i) lim A(x)=lim x=0, solim A(x)=0 .
=0 x>0 %0
(D) i AGo=lim x=1=1
x—1 x—1
V) im m(o=lim x'=2"=4
x—2 x—2
(v) lim A(x)=lim (8x)=8-2=6
xX— 2+ X— 2+
(vi) Since lim A(x)#lim h(x) , lim h(x) does not exist.
x—2 x— 2+ X2
&
4 /\
‘0 '> ): X
(b)

49. (a)




Stewart Calculus ET 5e 0534393217;2. Limits and Derivatives; 2.3 Calculating Limits Using the Limit Laws

(i) [x]=2for 2<x<-1,s0 lim [x]=lim (-2)=-2

-2 xs2
(i) [x]=-3for 3<x<2,s0 lim [x]=lim (-3)=-3.
X2 xo-2
The right and left limits are different, so lim [x] does not exist.
x— -2

(iii) [x]=-3for 3<x<2,s0 lim [x]=1lim (-3)=-3.
x—-24 x—-2.4

(b)
(i) [x]=n-1forn-1<x<n,solim [x]=lim (n-1)=n-1.

X—>n X—>n
(i1) [x]=n for n<x<n+1 ,so lim [x]=lim n=n .

+ +
X—n X—n

(c) lim [x] exists < a is not an integer.
X—=a

IS

50. (a) of 1 X
(b)
(i) lim f(x)=lim (x[x])=lim [x(n-1)]=n(n-1)=1

(i) lim f(x)=lim (x-[x])=lim (xn)=n-n=0

(c) lim f(x) exists < a is not an integer.
X—=a

51. The graph of f(x)=[x]+[x] is the same as the graph of g(x)=-1 with holes at each integer, since
f(a)=0 for any integer a . Thus, lim f(x)=-1and lim f(x)=-1,solim f(x)=-1.However,

PG ) x—>2

F(2)=[2]+[-2]1=2+(-2)=0 , s0 lim f(x)# f(2) .

x—2

=L0\’ 1-1=0 . As the velocity approaches the speed of light, the length
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approaches O .
A left-hand limit is necessary since L is not defined for v>c .

2
53. Since p(x) is a polynomial, p(x)=a gratax +- - +anxn . Thus, by the Limit Laws,

2 n

lim p(x) _ lim (a +a x+a x +- - - +a x

Y—a 0 1 2 n
X—>da

= agta 1lim x+a21im x2+- . +anlim X
X—=a X—a X—=a
2 n
= agta,ata,a +- - - +aa =p(a)
Thus, for any polynomial p , lim p(x)=p(a) .

X—>da

54. Let r(x)= P where p(x) and g(x) are any polynomials, and suppose that g(a)#0 . Thus,

q(x)
@ lim p(x) @
_ px xX—=a L. _ a . _
liglar(x) I;Ta g0 "~ Tim g(x) [Limit Law 5] = _q @ [ Exercise 53 | =r(a) .

55. Observe that 0< f(x)< x2 for all x , and lim 0=0=lim x2 . So, by the Squeeze Theorem,

x—0 x—0
lim f(x)=0 .

x—0

56. Let f(x)=[x] and g(x)=-[x] . Then lim f(x) and lim g(x) do not exist (Example 10) but

x—3 x—3

lim [ f(x)+g(x)]=lim ([x]-[x])=lim 0=0 .

x—3 x—3 x—3

57. Let f(x)=H(x) and g(x)=1-H(x) , where H is the Heaviside function defined in Exercise 1.3.59.
Thus, either f or g is O for any value of x . Then lim f(x) and lim g(x) do not exist, but

x—0 x—0
lim [ f(x)g(x)]=lim 0=0 .

x—=0 x—0

38.

lim f6x2 —lim (\ITX 2 {6-x+2 \I3—x+1>
2 Y3l V3r 1 {6 x+2 {3 x+l
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(\I 6-x )2—22 . 3—x+1 im ( 6 x4 3x+1 >
x—2 (m )2712 d6_-x+2 x—2

(2-x) (3 x+1) P R

1
=1 -
o (2-x) (Y6-x+2) 4oz Y6 x4+2 2

59. Since the denominator approaches 0 as x— -2 , the limit will exist only if the numerator also

2
approaches 0 as x— -2 . In order for this to happen, we need lim (3x +ax+a+3) =0&

x—-2
3(—2)2+a(—2)+a+3=0<:> 12-2a+a+3=0<a=15 . With a=15 , the limit becomes
2
m 3x +15x+18 lim 3(x+2)(x+3) lim 3(x+3) 3(-2+3) 3 1
1 - = 1 - = 1 = == = .
x— -2 x2+x,2 x— -2 (xil)(x+2) Y= -2 xfl *2*1 *3

60. Solution 1: First, we find the coordinates of P and Q as functions of r . Then we can find the
equation of the line determined by these two points, and thus find the x- intercept (the point R ), and
take the limit as r— 0 .

2 2 2
The coordinates of P are (0,r) . The point Q is the point of intersection of the two circles x +y =r
2 2 2 2 2 2 1 2
and (x-1) +y =1 . Eliminating y from these equations, we getr —x =1-(x-1) &r =1+2x-1&x= 57

Substituting back into the equation of the shrinking circle to find the y— coordinate, we get

1 2\2 2 2 2 2 1 2 1 2
< 57 ) +y =r &y =r <1— 2’ > Sy=rq| 1- i (the positive y- value). So the coordinates of

Q are <

2
) . The equation of the line joining P and Q is thus

Now we take the limit as r— OJr :lim x=lim 2 1-

+ +
r—0 r—0 r—0

So the limiting position of R is the point (4,0) .




Stewart Calculus ET 5e 0534393217;2. Limits and Derivatives; 2.3 Calculating Limits Using the Limit Laws

Solution 2: We add a few lines to the diagram, as shown. Note that APQS=9OO (subtended by
diameter PS ).

So 4SQR=9OO=Z OQT (subtended by diameter OT ). It follows that ZOQS=/TQR . Also
4PSQ=9OO—4 SPQ=/0RP . Since A QOS is isosceles, so is A QTR , implying that QT=TR . As the
circle C 5 shrinks, the point Q plainly approaches the origin, so the point R must approach a point

twice as far from the origin as 7', that is, the point (4,0) , as above.

"t
Q

:i ’T’ R x

.
L
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1. (a) To have 5x+3 within a distance of 0.1 of 13 , we must have 12.9<5x+3< 13.1=
9.9<5x<10.1=1.98< x<2.02 . Thus, x must be within 0.02 units of 2 so that 5x+3 is within 0.1 of
13.

(b) Use 0.01 in place of 0.1 in part (a) to obtain 0.002 .

2. (a) To have 6x-1 w1th1n a distance of 0.01 of 29 , we must have 28. 99< 6x-1<29.01=
29.99<6x<30.01=4. 9983< x<5. 0016 Thus, x must be within O. 0016 units of 5 so that 6x—1 is
within 0.01 of 29 . 3

(b) As in part (a) with 0.001 in place of 0.01 , we obtain 0.00016 -

(c) As in part (a) with 0.0001 in place of 0.01 , we obtain 0.000016 .

10 4 ) )
— 2| = 3 . On the right side, we need

3. On the left side of x=2 , we need |x-2| < -

10
3 -2

|x-2|< . For both of these conditions to be satisfied at once, we need the more

3

. . 4 4 ..
restrictive of the two to hold, that is, |x2| < 7 . So we can choose 6= ; , or any smaller positive

number.

4. On the left side, we need |x-5|<|4-5|=1 . On the right side, we need |x-5|<|5.7-5|=0.7 . For both
conditions to be satisfied at once, we need the more restrictive condition to hold; that is, |x-5|<0.7 .
So we can choose 6=0.7 , or any smaller positive number.

5. The leftmost question mark is the solution of \l;=1.6 and the rightmost, \I; =2.4 . So the values are

2 2
1.6 =2.56 and 2.4 =5.76 . On the left side, we need |x—4|<|2.56-4|=1.44 . On the right side, we need
| x-4]| <|5.76-4|=1.76 . To satisfy both conditions, we need the more restrictive condition to hold —
namely, |x-4|<1.44 . Thus, we can choose 5=1.44 , or any smaller positive number.

2 1
6. The left-hand question mark is the positive solution of x = 7

1
, that i1s, x= == , and the right-hand
2 2 &

2 3 ’ 3
question mark is the positive solution of x = 5 , that is, x= 5 . On the left side, we need
|x-1|< E -1 ~0.292 (rounding down to be safe). On the right side, we need
3 . .
|x-1]|< 3 —1 | =0.224 . The more restrictive of these two conditions must apply, so we choose

0=0.224 (or any smaller positive number).

7. | \I 4x+1 73| <0.5& 2.5<\I 4x+1<3.5 . We plot the three parts of this inequality on the same screen
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and identify the x —coordinates of the points of intersection using the cursor. It appears that the
inequality holds for 1.3125< x<2.8125 . Since [2-1.3125|=0.6875 and |2-2.8125|=0.8125 , we
choose 0<d <min{0.6875,0.8125} =0.6875 .

N

. 1
8. | sin x— >

need 0.42< x<0.64 . So since |0.5-0.42|=0.08 and |0.5-0.64|=0.14 , we choose
0<5 < min{0.08,0.14} =0.08 .

0.7
{

<0.1 & 0.4<sin x<0.6 . From the graph, we see that for this inequality to hold, we

0.3 / 0.7

: 3
9. For ¢ =1 , the definition of a limit requires that we find 6 such that | (4+x—3x )—2| <l

3 ) 3
I<4+x-3x <3 whenever 0<|x-1| <5 . If we plot the graphs of y=1, y=4+x-3x" and y=3 on the same
screen, we see that we need 0.86< x<1.11 . So since |1-0.86/]=0.14 and |1-1.11|=0.11 , we choose

3
0=0.11 (or any smaller positive number). For ¢ =0.1 , we must find ¢ such that | (4+x—3x )—2| <0.1

3
& 1.9<4+x-3x <2.1 whenever 0<|x-1|<é . From the graph, we see that we need 0.988< x<1.012 .
So since [1-0.988|=0.012 and |1-1.012|=0.012 , we choose 6=0.012 (or any smaller positive
number) for the inequality to hold.

0.8 \ . \ 1.2
0

v =21
N

0.98 : : < 1.02
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X

-1
-1
X
X

X
-1 -1
0.5< % P <1.5 whenever 0<|x-0| <5 . If we plot the graphs of y=0.5 , y= g P

same screen, we see that we need —1.59< x<0.76 . So since |0-(-1.59)|=1.59 and |0-0.76/=0.76 ,

we choose 0=0.76 (or any smaller positive number). For ¢ =0.1 , we must find 6 such that

X X
— e —1

10. For £ =0.5 , the definition of a limit requires that we find & such that <0.5&

, and y=1.5 on the

-1] <0.1 £09< <1.1 whenever 0<|x-0| <5 . From the graph, we see that we need

X
-0.21<x<0.18 . So since |0-(-0.21)]=0.21 and |0-0.18|=0.18 , we choose §=0.18 (or any smaller
positive number) for the inequality to hold.

y=15 /

0.8

11. From the graph, we see that >100 whenever 0.93< x<1.07. So since

2 2
(1) (x-1)
|1-0.93| =0.07 and |1-1.07|=0.07 , we can take 5=0.07 (or any smaller positive number).

W\é;
|
L oot

y = 100

12. For M=100 , we need —0.0997<x<0 or 0<x<0.0997 . Thus, we choose 6=0.0997 (or any smaller

2
positive number) so that if 0<|x| <5 , then cot x>100 .
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200 y=cot’x
y= 100(1// ]

=02

i 0.2
~=0.0997 0 =~0.0997

For M=1000 , we need —0.0316<x<0 or 0<x<0.0316 . Thus, we choose =0.0316 (or any smaller

.. . 2
positive number) so that if 0<|x| <5 , then cot x>1000 .
2000

y=cot’x
y=1000
u \J 0.1

C ~-0.0316 0 ~0.0316

1000
13.(a) A=7r and A=1000 cm = 77 =1000= r = — =

1000
r= [r>0] ~17.8412 cm.

(b) |A-1000|<5=-5< 7Tr ~1000< 5=1000-5< 7Tr2< 1000+5=

-\/ 995 -\/ 1005 = 17.7966<r<17.8858 . \/ 1000 %5 ~0.04466 and

1005 [ 1000
— ¥ 0.04455 . So if the machinist gets the radius within 0.0445 cm of 17.8412

T

2
the area will be within 5 cm  of 1000 .
(c) x is the radius, f(x) is the area, a is the target radius given in part (a), L is the target area (1000) ,
¢ is the tolerance in the area ( 5 ), and ¢ is the tolerance in the radius given in part (b).

2 2
14. (a) T=0.1w +2.155w+20 and 7=200=-0.1w +2.155w+20=200=- [ by the quadratic formula or
from the graph] wa33.0 watts ( w>0 )

202 (°C)

.
T =201 /

r-00 /

r-199 /

325 % / . < 33.5

(walts)
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(b) From the graph, 199<T <201=-32.89<w<33.11 .

(c) x is the input power, f(x) is the temperature, a is the target input power given in part (a), L is the
target temperature ( 200 ), ¢ is the tolerance in the temperature ( 1 ), and o is the tolerance in the
power input in watts indicated in part (b) ( 0.11 watts).

15. Given ¢ >0 , we need >0 such that if O<|x-1| <6 , then |(2x+3)-5| < . But |(2x43)-5| <c

[2x2]|<c ©2]|x1]|<c & |x-1]|<e/2 . So if we choose d=¢ /2 , then O<|x-1]| <6 = |(2x+3)-5| <¢ . Thus,
lim (2x+3)=5 by the definition of a limit.

x—1

1
16. Given ¢ >0 , we need 6 >0 such that if O<|x—(-2)|<é , then | ( > x+3)-2 | <¢ . But
1 1 1
( 5 x+3)2| < & 5 x+l | < & 5 | x42] <¢ < |x-(-2)| <2¢ . So if we choose §=2¢ , then
1 1
0<|x—(-2)| <6 = | ( 5 x+3)-2| <¢ . Thus, lim ( 5 x+3)=2 by the definition of a limit.

x—-2

e

N
y=5x+3

_2 0 X
------ 2-8 —2+6

17. Given ¢ >0, we need 0 >0 such that if 0<|x—(-3)|<é , then |(1-4x)-13|<e¢ . But |(1-4x)-13]|<c &
|-4x-12]|<c & |-4| |x+3] <c & |x-(-3)|<e /4 . So if we choose é=¢ /4 , then 0<|x—(-3)| <6 =
|(1-4x)-13| <¢ . Thus, lim (1-4x)=13 by the definition of a limit.

x—-3
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ys |- 4y 13+8

lé—g

v 3
Y, »»3\\ U X

~3-8 =3+

18. Given ¢ >0 , we need 6 >0 such that if 0<|x-4|<d , then |(7-3x)-(-5)| <¢ . But |(7-3x)-(-5)|<c &
| -3x+12|<e < |-3] |x-4|<e < |x-4|<e/3 . So if we choose d=¢ /3 , then 0<|x4| <6 =
|(7-3x)~(-5)|<¢ . Thus, lim (7-3x)=-5 by the definition of a limit.

3 1
19. Given ¢ >0 , we need 5>0 such that if 0<|x-3| <5 . then 15“—3_ <e & 5 lw3l<e o a3l <5e
| x-3| x 3 L
So choose d=5¢ . Then 0<|x-3|<d = |x-3|<5¢ = 5 <= |5 5| . By the definition of a
3
limit, lim === .
o3 5 5

\OJ ROV)

20. Given ¢ >0 , we need 6 >0 such that if O<|x-6|<é , then <&

| x-6|
4

9
<¢ . By the definition of a limit, lim < 2 +3> =z
x—6 4 2

(+3)-

<& <=

NG P

X 9
<4+3>—2

1

2 | x-6|<c < |x-6]<4e . So choose $=4¢ . Then 0<|x6]|<d = |x 6] <de =

x 0 < | 2 +3 —2
£ = 1 >

21. Given ¢ >0 , we need 6 >0 such that if O<|x—(-5)| <5 , then

<=

4 4

<& <=
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9]

3 5
5 <& | x+5] <e & |x-(-5)|< 3 ¢ . So choose (5=§£ . Then |x-(-5)|<d =

(-2

3
|-x3

W

3
<¢ . Thus, lim <4— g x> =7 by the definition of a limit.
x—-5

2
+x-12
22. Given ¢ >0, we need 6 >0 such that if O<|x-3| <5 , then al x)_c3 ~7 | <e . Notice that if
2
+x-12 +4)(x-3
0<|x-3| , then x#£3 , so e x)_c3 = e x)—(; ) =x+4 . Thus, when O<|x-3| , we have
2
X +x-12 i )
3 | <® |(x+4)-7|<e < |x-3| < . We take d=¢ and see that 0<|x 3| <6 =
“rx 12 “rx 12
X +x- X +x-
~7| <e¢ . By the definition of a limit, lim =7 .
x3 3 X3

23. Given ¢ >0 , we need 6 >0 such that if O<|x-a|<é , then |x-a|<e . So d=¢ will work.

24. Given ¢ >0 , we need 0 >0 such that if O<|x—a| <0 , then |c—c|<e . But |c—¢|=0, so this will be
true no matter what & we pick.

_ . _ 2 2
25. Given ¢ >0 , we need 6 >0 such that if 0<|x-0|<é , then |x 70| <c &x <€ & <\l? . Take (Sz\l?

2 2
. Then 0<|x0] <6 = |x —O| <¢ . Thus, lim x =0 by the definition of a limit.

x—0

3 3
26. Given ¢ >0 , we need 6 >0 such that if O<|x-0| <4 , then |x —Ol <e & x| <e & |« <§\I; . Take
! ) 3 3 .3 _r .
R =§\I? . Then 0<|x 0] <6 = |x —Ol <4 =¢ . Thus, lim x =0 by the definition of a limit.

x—0

27. Given ¢ >0 , we need 6 >0 such that if O<|x-0|<é , then | |x| O]<e . But | |x||=|x| . So this is

true if we pick d=¢ . Thus, lim |x|=0 by the definition of a limit.
x—0

4
28. Given ¢ >0 , we need 5 >0 such that if 9-5<x<9 , then | 39x-0] < ¢ 40 x<e :9-x<e 6
4 4
9-¢"<x<0 . Sotake o= . Then 9-5<x<9= | 0 x-0| < . Thus, lim 3[9-x=0 by the definition of a

x—9

limit.

2 2
29. Given ¢ >0 , we need 0 >0 such that if O<|x2| <4 , then | (x 74x+5)71| < & |x 74x+4| < &
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|-2)’] <c . Sotake 5={% . Then 0<|x-2|<5 ¢ |x-2] <= & |x-2)7| <c . Thus, tim (x*4x45)=1
x—2

by the definition of a limit.

2 2
30. Given ¢ >0 , we need 6 >0 such that if O<|x-3| < , then | (x +xf4) 78| <& |x +x712| <&
|(x-3)(x+4)| <¢ . Notice that if |x-3|<1 , then —1<x3<1= 6<x+4<8= | x+4|<8 . So take

S=min{1.c/8) . Then 0<|x-3|<5 < |(x-3)(x+4)| < |8(x-3)| =8- | x-3|<85 < . Thus, lim (x"+x-4)=8
x—3

by the definition of a limit.

31. Given ¢ >0, we need 5 >0 such that if 0<|x(-2)| < , then | (x2—1 ) —3| <e or upon simplifying we

2
need |x 74| <¢ whenever 0<|x+2| <5 . Notice that if |x+2|<1 , then ~1<x+2<1=-5<x2<-3=
|x-2]|<5 . So take 5=min{¢/5,1} . Then 0<|x+2|<d = |x2|<5 and |x+2|<c/5, so

| (% 1) 3] =1 c+2)(x- ) =1x+2] [x-2] (e /5)(5)=¢ . Thus, by the definition of a limit, lim (x*-1)=3

x—-2

! ) 3
32. Given £ >0 , we need 5 >0 such that if 0<|x-2|<d , then |x —8| <¢ . Now
3 2 2 2
x -8 =|(x72) (x +2x+4) | JIf |x-2| <1, thatis, 1<x<3 , then x +2x+4<3 +2(3)+4=19 and so

3 2
8] =1x 21 (F42044)<19]x 21 . Soif we take5=min{ 1, 119
3

2 3
28] =x2) (o)< 119 -19=¢ . Thus, by the definition of a limit, lim x =8 .
x—2

} , then O<|x-2| <6 =

33. Given ¢ >0 , we let d =min { 2, % } IF0<|x-3| <o , then |x-3] <2= 2<x-3<2= 4<x+3<8=

2 2
|x+3] <8 . Also |x3|<€§ so |29 =[x+3] [x-3] <8- % = . Thus, lim x =9 ..
x—3

34. From the figure, our choices for 6 are 6 1=3—\I 9-—<¢ and o 2=\I 9+¢ -3 . The largest possible choice

for ¢ is the minimum value of {0 1,(5 2}; that is, o =min{o 1,5 2}=5 = O+¢ -3,
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-y

35. (a) The points of intersection in the graph are (x 1,2.6) and (x2,3.4) with x ~ 0.891 and X 1.093 .
Thus, we can take o to be the smaller of l—x1 and x2—1 .S0 =x2—1% 0.093 .

. 3 . C o
(b) Solving x +x+1=3+¢ gives us two nonreal complex roots and one real root, which is

> 2/3
(216+108£+12'\/336+3245+81£ ) -12

x(e)= . Thus, d6=x(¢ )-1.

1/3
6(216+1085 +12'\/ 336+324¢ +81¢ g )
(¢) If e=0.4, then x(¢ )~ 1.093272342 and 6 =x(¢ )-1~0.093 , which agrees with our answer in part

(a).

36. 1. Guessing a value for 6 Let ¢ >0 be given. We have to find a number 6 >0 such that

1 1 1 2-x | x-2| _ .
L5 | < whenever 0<|x-2| <5 . But . | = 2 | =12 <¢ . We find a positive
1 2
constant C such that B <C= llxz i <C|x-2| and we can make C|x-2|<¢ by taking |x72|< - =5
1 1 1 1 1 1 1
. We restrict x to lie in the interval |x-2| <1= 1<x<3 so 1> - >3 e< <37 Tl <2 So
X 6 2x [2x| 2
1
C= 5 is suitable. Thus, we should choose 6 =min{1,2¢} .
2. Showing that 5 works Given ¢ >0 we let =min{1,2¢} . If 0<|x 2| < , then |x2|<]1= l<x<3=

1

1 1 1
m <3 (as in part 1). Also |x-2|<2¢ , so =

-2 1
lez || < = -2¢=¢ . This shows that
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1
lim (1/x)=§ .

x—2

37. 1. Guessing a value for 6 Given ¢ >0 , we must find 6 >0 such that | ﬁjﬁ | <e whenever

0<|x-al<s . But | \I;—\IZ |= \’I_x C\ll|_ <¢ (from the hint). Now if we can find a positive constant C
x+ya

such that y x+y a>C then [xdl < lxdl <¢ , and we take |x-a|<Cs . We can find this number by
fife <

. .. : 1 1 1 1 3
restricting x to lie in some interval centered at a . If |x—a|< > a , then — > a<x—a< > a= 5 a<x< > a

1 1 . ) )
=4 x+Ja> 5 a+ya ,and so C= 5 a +y a 1s a suitable choice for the constant. So

1 : o 1 ’ 1
|xa|<( §a+\lz>£ . This suggeststhatwelet(>=m1n{ 5a,< §a+ﬁ>e} :

1 1
2. Showing that & works Given ¢ >0 , we let 5 =min 5@ 54 +\IZ > € } I 0<|x-al <o,

1 1 )
then |x—a|<§a:> x+ a>-\/ §a+\lz (as in part 1). Also |x—a|<<-\/ a+\lz> €, SO

H;—\I; |= [xa] (\Ia_/2+\I;)5 =¢ . Therefore, lim ﬁqﬁ by the definition of a limit.
X

Virfa (a2 +a)

N | —

—da

1 1
38. Suppose that lim H(¢)=L . Given ¢ = 5 there exists 6 >0 such that 0<|¢| <5 = |H()L| < 5
t—0
1 1 i 1 1 ) 1
L- 5 <H(t)<L+ 5 - For O<t<d , H(t)=1 , so 1<L+ 5 =L> 5 - For -6<t<0 , H(t)=0 , so L- 5 <0=

1 1
L< 5 This contradicts L> 5 Therefore, lim H(t) does not exist.
t—0

39. Suppose that lim f(x)=L . Given ¢ =

x—0

1
, there exists 6 >0 such that 0<|x| <6 = | f(x)-L| < 5

N | —

1 1
Take any rational number r with 0<|r|<d . Then f(r)=0 , so |0-L|< 5 »%0 L<|L|< 5 Now take

1 1 1
any irrational number s with 0<|s|<¢ . Then f(s)=1 ,so |1-L|< 5 Hence, 1-L< 5+ 80 L> 5 This

. 1 . .
contradicts L< 3 so lim f(x) does not exist.
x—0

40. First suppose that lim f(x)=L . Then, given ¢ >0 there exists 5 >0 so that 0<|x-a| <6 =

X—>a

| f(x)-L|<¢ . Then a0 <x<a=> 0<|x—al<d so | f(x)-L|<e . Thus,
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lim f(x)=L . Also a<x<a+d = 0<|x-al<é so | f(x)-L|<e . Hence, lim f(x)=L .
X— (17 X— (1+
Now suppose lim f(x)=L=lim f(x) . Let e >0 be given. Since lim f(x)=L , there exists o 1>O so that

X—=a X—>da X—>da

a-d <x<a= | f(x)-L|<e . Since lim f(x)=L , there exists & ,>0 so that a<x<a+d = | f(x)-L|<e . Let

R
X—da
5 be the smaller of & X and & - Then 0<|x—a|<d=a-¢ | <x<a or a<x<a+d , 80 | f(x)-L|<¢ . Hence,
lim f(x)=L . So we have proved that lim f(x)=L<1lim f(x)=L=lim f(x).
- +

X—a X—a

X—=da X—=da
41— 510, 0006 (43) < —— & |x43|< & (3 <~
. x x x(- —
’ 4
(x+3) 10,000 ’ 10’000‘ 10
4 4 1
42. Given M>0 , we need >0 such that O<|x+3| <5 = 1/(x+3) >M . Now >M & (x4+3) < 7R
(x+3)
1 ) 1 ) 1 1 )
|x+3|<4— . So take 0=7— . Then O<|x+3| <= 1 = >M , so lim =00 .

M M M (43) =3 (x43)"

) i _ 1 M i
43. Given M<0 we need 6 >0 so that In x<M whenever O<x<d ; that is, x=e "<e” whenever 0<x<d .

M M M L .
This suggests that we take 0=e¢ . If O<x<e ,thenInx<Ine =M . By the definition of a limit,
lim Inx=-o0 .

+
x—=0

44. (a) Let M be given. Since lim f(x)=o0 , there exists & >0 such that 0<|x-al <o = f)>M+1-c .

X—>da

Since lim g(x)=c , there exists & 2>O such that 0<|x—al| <o = | g(x)—c|<1= g(x)>c-1.Letd be the

smalle)rc_o)g 5, and s, . Then 0<|x-al <6 = f(x)+g(x)>(M+1-c)+(c-1)=M . Thus, lim [ f(x)+g(x)]=co .
(b) Let M>0 be given. Since lim g(x)=c>0 , there exists o >0 such that 0<|x-al i; la:> | g(x)—c|<cl2
= g(x)>c/2 . Since lim f (x)=:6,l there exists & 2>O such that O<|x—al| <o = f(x)>2M/c . Let
x>a
d=min { 5 1,(52} . Then 0<|x—a| <6 = f(x)g(x)> 2%4 % =M ,solim f(x)g(x)=c0 .
(¢) Let N<O be given. Since lim g(x)=c<0 , there exists o >0 suc)il_)t(lllat 0<|x-al <o = | g(x)—c|<—c/2
x—a

= g(x)<c/2 . Since lim f(x)=00 , there exists o >0 such that 0<|x-al <o ,= J(x)>2Nlc . (Note that

X—>da
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¢<0 and N<0=>2N/c>0 .) Let 6 =min { 50 2} . Then 0<|x—a| <6 = f(x)>2N/c=
g =N ,solim f(x)g(x)=-o0 .

X—>a

2N
S gx)< -
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1. From Definition 1, lim f(x)=f(4) .

x—4
2. The graph of f has no hole, jump, or vertical asymptote.

3. (a) The following are the numbers at which f is discontinuous and the type of discontinuity at that
number: —4 (removable), -2 ( jump), 2 ( jump), 4 (infinite).
(b) f is continuous from the left at -2 since lim f(x)=f(-2) . f is continuous from the right at 2 and

x—>-2
4 since lim f(x)=f(2) and lim f(x)=f(4) . It is continuous from neither side at -4 since f(-4) is
X2 x4
undefined.

4. g is continuous on [-4,-2) , (-2,2) , [2.4) , (4,6) , and (6,8) .

5. The graph of y=f(x) must have a discontinuity at x=3 and must show that lim f(x)=f(3) .

x—3
)

N~
0 ‘&:/ x

gy

Cost
(in dollars) 1

1 Time

7. (a) (in hours)

(b) There are discontinuities at times =1 ,2, 3, and 4 . A person parking in the lot would want to
keep in mind that the charge will jump at the beginning of each hour.

8. (a) Continuous; at the location in question, the temperature changes smoothly as time passes,
without any instantaneous jumps from one temperature to another.
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(b) Continuous; the temperature at a specific time changes smoothly as the distance due west from
New York City increases, without any instantaneous jumps.

(c) Discontinuous; as the distance due west from New York City increases, the altitude above sea
level may jump from one height to another without going through all of the intermediate values —— at
a cliff, for example.

(d) Discontinuous; as the distance traveled increases, the cost of the ride jumps in small increments.
(e) Discontinuous; when the lights are switched on (or off ), the current suddenly changes between 0
and some nonzero value, without passing through all of the intermediate values. This is debatable,
though, depending on your definition of current.

9. Since f and g are continuous functions,
lim [2f(.X)*g(X)] _ 2lim f(x)—hm3 g(.X) [by Limit Laws 2 and 3]

x—3 x—3 X
=2f(3)g3) [by continuity of f and g at x=3 ]
=2-5-2(3)=10-g(3)

Since it is given that lim [2f(x)-g(x)]=4 , we have 10-g(3)=4 , so g(3)=6 .

x—3

10.1im f=lim (x*+7x )=lim x+_[Tm 75im x=4"+{7 4=16+{3=/(4)
-4  x—4

x—4 x—4 x—4 X

By the definition of continuity, f is continuous at a=4 .

3\ 4 3\ 4 374 4

11. lim f(x)=lim (x+2x ) =<lim x+2lim x ) =[—1+2(—1) ] =(-3) =81=f(-1).
x—-—1 x—-1 x—-1 x——1

By the definition of continuity, f is continuous at a=-1 .

lim x+lim 1
+1 >4 x—4 4+1
12.lim g()=lim ——— = = =
x—4 x=4 2y -1 2lim x -lim 1 2(4) -1
x—4 x—4

5
=31 =g(4) . So g is continuous at 4 .

lim (2x+3) 2lim x+lim 3
. . 2x+3 x—a L. Xx—a X—a
13. For a>2 , we have liTa f(x)-l:r_)na 2 = Iim (x2) [ Limit Law 5] = i~ Tim 2
X—=a X—=a X—=a
2a+3 ) ) ) . )
[1,2,and 3] = E [ 7 and 8] =f(a) . Thus, f is continuous at x=a for every a in (2,00) ; thatis, f is

continuous on (2,00) .

14. For a<3 , we have lim g(x)=lim 2+ 3-x=2lim \I 3-x [ Limit Law 3] =2 ’lim (3—x) [11]
X—>a

X—>da X—>a X—>da
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=2 |lim 3-lim x [ 2] =2 \’ 3-a [ 7 and 8] =g(a) , so g is continuous at x=a for every a in (-00,3) .

X—>a X—>a
Also, lim g(x)=0=g(3) , so g is continuous from the left at 3 . Thus, g is continuous on (-00,3].

x—3

15. f(x)=In |x-2]| is discontinuous at 2 since f(2)=In 0 is not defined.

¥ Lx=2

T~

0

16. f(x)= { é/ (=1) g f_éll is discontinuous at 1 because lim f(x) does not exist.
- x—1
YA
(1.2) \.
ol |
X
ifx<0
7./0=90 % ifs0
X =

The left-hand limit of f at a=0 is lim f(x)=lim ¢'=1.The right-hand limit of f at a=0 is

x—0 x—=0

lim f(x)=lim x =0 . Since these limits are not equal, lim f(x) does not exist and f is discontinuous

X0 X0 x>0

at 0.
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X —X

if x£1
x -1 1f x=1
1

Sx)=

2
m fO) 2y, 2D

x—1 o 1 xzfl o 1 (x+1)(x-1)

. X 1
‘hml 4l 2

X—

but f(1)=1, so f is discontinous at 1.

(4] bd
x=-1
x2 x—12

_ _ if x#2-3 x4 if x#£-3
19. 7= R { 5 if x=3
So lim f(x)=lim (x-4)=-7and f(-3)=-75.

x—-3 x—-3
Since lim f(x)# f(-3), f is discontinuous at -3 .
x—-3
v
/

0 / x

2 .
_ 1+x 1f x<1
20. f(x)—{ 4_;5 if x> 1

lim f(o)=lim (14+x)=1+1=2 and

x—1 x—1
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lim f(x)=lim (4-x)=4-1=3 .
X— 1+ xX— 1+

Thus, f is discontinuous at 1 because lim f(x) does not exist.
x—1

21, F(x)= 5
X +5x+6

number in its domain, {x|x2+5x+6;é0} ={xl(x+3)(x+2)# 0} ={xlx#-3,-2} or
(~00,-3)U(-3,2)U(-2,00) .

is a rational function. So by Theorem 5 (or Theorem 7), F is continuous at every

3
22. By Theorem 7, the root function E\I; and the polynomial function 1+x are continuous on R . By

3
part 4 of Theorem 4, the product G(x)=§\I; (1+x ) is continuous on its domain, R .

2
23. By Theorem 35, the polynomials x and 2x-1 are continuous on (o0 ,00) . By Theorem 7, the root
function \I; is continuous on [0,00 )] . By Theorem 9, the composite function \I 2x-1 1is continuous on

1 2 1
its domain, | > ,00)] . By part 1 of Theorem 4, the sum R(x)=x +/2x-1 is continuous on [ 5 ,00)] .

24. By Theorem 7, the trigonometric function sin x and the polynomial function x+1 are continuous

on R . By part 5 of Theorem 4, h(x)= e

1 is continuous on its domain, {xlx#-1} .
x

25. By Theorem 5, the polynomial 5x is continuous on (-00,00) . By Theorems 9 and 7, sin 5x is
continuous on (-00,00) . By Theorem 7, ¢" is continuous on (-00,00) . By part 4 of Theorem 4, the

product of e and sin Sx is continuous at all numbers which are in both of their domains, that is, on
(~00,00) .

2 -1
26. By Theorem 5, the polynomial x -1 is continuous on (00 ,00) . By Theorem 7, sin  is

. . . L2 . . . . .
continuous on its domain, [-1,1] . By Theorem 9, sin (x —1) 1S continuous on its domain, which is

Ure 1<) ={xoc <2} =(xlld<y2 } [ 4242 ] .
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4
27. By Theorem 5, the polynomial 7 -1 is continuous on (-00,00) . By Theorem 7, In x is continuous
4
on its domain, (0,00) . By Theorem 9, In (t —1) 1s continuous on its domain, which is
4 4
{tlt —1>O} ={t|t >1} ={tl|z]>1} =(-00,~1)U(1,00) .

28. By Theorem 7, \I; is continuous on [0,00) . By Theorems 7 and 9, e\l; is continuous on [0,00) .

Also by Theorems 7 and 9, cos (e\I;) is continuous on [0,00) .

29. The function y= N is discontinuous at x=0 because the left- and right-hand limits at x=0 are
I+e

different.

. 2 .. . T . . .
30. The function y=tan x is discontinuous at x= ) +7k , where k is any integer. The function

2. . . 2 . 2.
y=In (tan x) is also discontinuous where tan xis 0 , that is, at x=rk . So y=In (tan x) is

. . T .
discontinuous at x="-n , n any integer.

AN

LYY

31. Because we are dealing with root functions, 5+ x is continuous on [0,00) , \I Xx+5 is continuous

5+]l X

on [-5,00) , so the quotient f(x)= \I5_ is continuous on [0,00) . Since f is continuous at x=4 ,
+Xx

6

1im4 JO)=f(4)=7

32. Because x is continuous on R , sin x is continuous on R , and x+sin x is continuous on R , the
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composite function f(x)=sin (x+sin x) is continuous on R , so lim f(x)=f(rr)=sin (7r+sin 77 )=sin 7=0 .
X—=>7T

2
2. ) ) ) XX, .
33. Because x —x is continuous on R , the composite function f(x)=e 1s continuous on R , so

lim f)=f(l)=e '=e=1.

x—1

34. Because arctan is a continuous function, we can apply Theorem 8.

2
-4 2(x—2 2 2
lim arctan( x2 >=arctan <lim M >=arctan <lim X+ >=arctan = ~(0.588

x—2 3x —6x o 3x(x2) o 3x 3

2 .
35f(X)={ X if x<1

\I} if x>1

2
By Theorem 5, since f(x) equals the polynomial x on (-o0,1), f is continuous on (-oc0,1) . By
Theorem 7, since f(x) equals the root function \I; on (1,00),f is continuous on (1,00) . At x=1,
2
lim f(x)=lim x"=1 and lim f(x)=lim yx=1.Thus, lim f(x) exists and equals 1 . Also, f(1)=y1=1
- +

1 X 1 o 1 X 1 x=1

. Thus, f is continuous at x=1 . We conclude that f is continuous on (-00,00) .

sinx if x<m/4

36. f(x)= { cosx if x>mn/4
By Theorem 7, the trigonometric functions are continuous. Since f(x)=sin x on (-oco,7/4) and
f(x)=cos x on (71/4,00) , f is continuous on (—oo ,7/4)U(71/4,00).

lim f(x)= lim sin x=sin % =1/ﬁ since the sine function is continuous at 77/4. Similarly,
x— (7/4) x— (7/4)

lim f(x)= lim cos x=1/\I§ by continuity of the cosine function at 7/4 . Thus, lim f(x)
x (/4)" x (/4)" x> (7/4)
exists and equals I/ﬁ , which agrees with the value f(7/4) . Therefore, f is continuous at 77/4 , so f
1s continuous on (—00,00) .

l4x-  if x<0
37 f=4  2x  if 0<x<2

S is continuous on (-00,0) , (0,2) , and (2,00 ) since it is a polynomial on each of these intervals. Now
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lim foo=lim (1+x)=1 and

x—0 x—0

0 o0 ¥

lim f(x)=lim (2-x)=2, so f is discontinuous at 0 . Since f(0)=1, f is continuous from the left at 0.
x—0 x—0

2
Also, lim f(x)=lim (2-x)=0,lim f(x)=lim (x-2) =0, and f(2)=0, so f is continuous at 2. The only

x—2 x—2 xX— 2+ xX— 2+
number at which f is discontinuous is O .

x+1if x<1
38. f(x)= 1/x if 1<x<3

yx3 if x>3
f 1s continuous on (-00,1) , (1,3) , and (3,00 ) , where it is a polynomial, a rational function, and a
composite of a root function with a polynomial, respectively. Now lim f(x)=lim (x+1)=2 and

x—1 x—1
lim f(x)=lim (1/x)=1,so f is discontinuous at 1 .

+ +
x—1 x—1

v

Y 3,0 x
/ (3.0}

Since f(1)=2, f is continuous from the left at 1 . Also, lim f(x)=lim (1/x)=1/3, and
x—3 x—3
lim f(x)=lim \I x-3=0=f(3), so f is discontinuous at 3 , but it is continuous from the right at 3.
+ +

x—3 x—3

X+2 if x<0
39. f(x)= S if 0<x<1
2y 1f x>1

f is continuous on (-c0,0) and (1,00) since on each of these intervals it is a polynomial; it is
continuous on (0,1) since it is an exponential. Now
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lim f(x)=lim (x+2)=2 and lim f(x)=lim ¢'=1 , so f 1is discontinuous at O . Since f(0)=1, f is
X0 X0 x>0 x>0
continuous from the right at 0 . Also lim f(x)=lim ¢'=e and lim f()=lim (2-x)=1,s0 f is

x—1 x—1 X— 1+ xX— 1+
discontinuous at 1 . Since f(1)=e , f is continuous from the leftat 1 .

40. By Theorem 5, each piece of F is continuous on its domain. We need to check for continuity at

r=R.
lim F(r)=lim and lim F(r)=lim — = »%0 lim F(r)= — - Since F(R)= —
r>R r-R R R r— R+ r— R+ r R r-R R R

F is continuous at R . Therefore, F is a continuous function of r .

GMr _GM GM _GM GM GM

41. f is continuous on (-00,3) and (3,00) . Now lim f(x)=lim (cx+1)=3c+1 and

x—3 x—3

1
lim f(x)=lim (cx2—1)=9c—1 . So f is continuous <:>3c+1=9c—1<:>6c=2<:>c=:-5 . Thus, for f to be

x—3 x—3

) 1
continuous on (-00,0) , c= 3

2 2
42. The functions x ¢ and cx+20 , considered on the intervals (-oc0,4) and [4,00) respectively, are
continuous for any value of ¢ . So the only possible discontinuity is at x=4 . For the function to be
continuous at x=4 , the left-hand and right-hand limits must be the same. Now

2 2 2 2
lim g(x)=lim (x — )=l6fc and lim g(x)=lim (cx+20)=4c+20=g(4) . Thus, 16-c =4c+20&
- - + +
x—4 x—4 x—4 x—4

cz+4c+4=0<:> c=72.

2
—2x-8 —4)(x+2
43. (@) flo)= - x+); - < x)-g-'- )

continuous on R and f(x)=g(x) for x#-2 . [The discontinuity is removed by defining f(-2)=-06 .]
(b)

has a removable discontinuity at -2 because g(x)=x4 is
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~7
f(x)= ﬁ =lim f(x)=-1and lim f(x)=1.Thus, lim f(x) does not exist, so the discontinuity is

x—7 X— 7+ x=7

not removable. (It is a jump discontinuity.)

3 2
64  (+4)(x 4x+16
© fx)= x):l-4 - )(;4 =

continuous on R and f(x)=g(x) for x4 .[The discontinuity is removed by defining f(-4)=48 .]

3qx 3-x

(d) f(x)= 9. = (3_ \I;) (3+ \I}) has a removable discontinuity at 9 because g(x)= 3+1\I; is

2
has a removable discontinuity at -4 because g(x)=x —4x+16 is

1
continuous on R and f(x)=g(x) for x#9 . [The discontinuity is removed by defining f(9)= 6 N

44.

¥
34

24

N=2
14

o] o2 1 %
f does not satisfy the conclusion of the Intermediate Value Theorem.
¥

\0/

o oxs 1 x
J does satisfy the conclusion of the Intermediate Value Theorem.

45. f(x)=x3—x2+x is continuous on the interval [2,3] , f(2)=6 , and f(3)=21 . Since 6<10<21 , there is
a number ¢ in (2,3) such that f(c)=10 by the Intermediate Value Theorem.

2
46. f(x)=x_is continuous on the interval [1,2] , f(1)=1 , and f(2)=4 . Since 1<2<4 , there is a

2
number ¢ in (1,2) such that f(c)=c =2 by the Intermediate Value Theorem.

4
47. f(x)=x +x-3is continuous on the interval [1,2], f(1)=-1 , and f(2)=15 . Since ~1<0<15 , there is a
number c in (1,2) such that f(c)=0 by the Intermediate Value Theorem. Thus, there is a root of the

4
equation x +x-3=0 in the interval (1,2).

48. f(x)=§\l;+x—l is continuous on the interval [0,1], f(0)=-1 , and f(1)=1 . Since —~1<0<I1 , there is a
number c in (0,1) such that f(c)=0 by the Intermediate Value Theorem. Thus, there is a root of the
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equation g\l;+xfl=0 , or §\I;=1fx , in the interval (0,1).

49. f(x)=cos x—x is continuous on the interval [0,1] , f(0)=1 , and f(1)=cos 1-1~-0.46 . Since
~0.46<0<1 , there is a number ¢ in (0,1) such that f(c)=0 by the Intermediate Value Theorem. Thus,
there is a root of the equation cos x-x=0 , or cos x=x , in the interval (0,1) .

~ -1 -2
50. f(x)=In x—e *is continuous on the interval [1,2] , f(1)=-e ~-0.37,and f(2)=In2-¢ ~0.56 .
Since -0.37<0<0.56 , there is a number ¢ in (1,2) such that f(c)=0 by the Intermediate Value

Theorem. Thus, there is a root of the equation In x—e_x=0 ,orIn x=e¢ , in the interval (1,2) .

51. (a) f(x)=€ +x-2 is continuous on the interval [0,1] , £(0)=-1<0 , and f(1)=e-1~1.7250 . Since
~1<0<1.72 , there is a number ¢ in (0,1) such that f(c)=0 by the Intermediate Value Theorem. Thus,

there is a root of the equation ¢ +x2=0 , Or €= x , in the interval (0,1) .
(b) f(0.44)~-0.007<0 and f(0.45)~0.018>0 , so there is a root between 0.44 and 0.45 .

52.(a) f(x)=sin x-2+x is continuous on [0,2] , f(0)=-2 , and f(2)=sin 2~0.91 . Since 2<0<0.91 ,
there is a number ¢ in (0,2) such that f(c)=0 by the Intermediate Value Theorem. Thus, there is a root
of the equation sin x-2+x=0, or sin x=2-x , in the interval (0,2) .

(b) f(1.10)~-0.009<0 and f(1.11)~0.006>0 , so there is a root between 1.10 and 1.11 .

5 2 5 2 5.2
53. (a) Let f(x)=x —x —4.Then f(1)=1 -1 4=-4<0 and f(2)=2 -2 -4=24>0 . So by the Intermediate

5 2
Value Theorem, there is a number ¢ in (1,2) such that f(c)=c ¢ —4=0.

(b) We can see from the graphs that, correct to three decimal places, the root is x~1.434 .
25

|

=10

i‘ij 11.5

1 1 8
54. (a) Let f(x)=yx-5- 3 Then f(5)=- g <0 and f(6)= 5 >0 , and f is continuous on [5,00) . So
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by the Intermediate Value Theorem, there is a number ¢ in (5,6) such that f(c)=0 . This implies that
1
c+3 e
(b) Using the intersect feature of the graphing device, we find that the root of the equation is x=5.016

, correct to three decimal places.

0.

Y b

I — : 5.1
0

55. (=) If f is continuous at a , then by Theorem 8 with g(h)=a+h , we have
lim f(a+h)=f(1im (a+h) )=f(a) .
h

h—0 -0

(< )Lete>0. Since lim f(a+h)=f(a) , there exists & >0 such that 0<| k| <é = | f(a+h)-f(a)| < . So

h—0
if 0<|x-al<é , then | f(x)-f(a)|=| f(a+(x-a))-f(a)|<c . Thus, lim f(x)=f(a) and so f is continuous
X—=dad

ata.
56.

lim sin (a+h) =lim (sin acos h+cos asin h)=lim (sin acos h)+lim (cos asin /)

h—0 h—0 h—0 h—0

=(lim sina) {lim cos A\+(lim cos a\ {lim sin A
h—0 h—0 h—0 h—0

=(sin a)(1)+(cos a)(0)=sin a

57. As in the previous exercise, we must show that lim cos (a+h)=cos a to prove that the cosine

h—0
function is continuous.
lim cos (a+h) =lim (cos acos h-sin asin h)
h—0 h—0
=lim (cos acos h)-lim (sin asin h)
h—0 h—0
=(lim cosa) (lim cos 2\—(lim sin a\ (lim sin &
h—0 h—0 h—0 h—0

=(cos a)(1)—(sin a)(0)=cos a

58. (a) Since f is continuous at a , lim f(x)=f(a) .Thus, using the Constant Multiple Law of Limits,

X—>da
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we have lim (¢f )(x)=lim cf(x)=clim f(x)=cf(a)=(cf )(a) . Therefore, cf is continuous at a .

X—=a X—=a X—a
(b) Since f and g are continuous at a , lim f(x)=f(a) and lim g(x)=g(a) . Since g(a)#0 , we can use
X—>da X—>da
lim f(x)

| o 1) L[ x—a _f(a)_<1> £
the Quotient Law of Limits: I;ina < p (x)-l;ina o)~ lim g0~ g@ ~\ g (a) . Thus, p i

X—=da
continuous at a .

0 if x is rational
9. f (x)={ 1 if x is irrational
the interval (a6 ,a+d ) contains both infinitely many rational and infinitely many irrational numbers.
Since f(a)=0 or 1 , there are infinitely many numbers x with 0<|x-a|<d and | f(x)-f(a)|=1 . Thus,
lim f(x)# f(a) . [Infactlim f(x) does not even exist.]

X—a X—a

is continuous nowhere. For, given any number a and any 6 >0,

0 if x is rational
x if x is irrational

the Squeeze Theorem lim g(x)=0=g(0) . But g is continuous nowhere else. For if a0 and 6>0 , the
x—=0

interval (a-0,a+d) contains both infinitely many rational and infinitely many irrational numbers.
Since g(a)=0 or a , there are infinitely many numbers x with 0<|x—a| <5 and |g(x)-g(a)|>|al/2 .
Thus, lim g(x)+# g(a) .

X—>da

60. g(x)= { is continuous at 0 . To see why, note that —| x| < g(x)<|x| , so by

3 3
61. If there is such a number, it satisfies the equation x +1=x<x —x+1=0 . Let the left-hand side of
this equation be called f(x) . Now f(-2)=-5<0 , and f(-1)=1>0 . Note also that f(x) is a polynomial,
and thus continuous. So by the Intermediate Value Theorem, there is a number ¢ between -2 and -1

3
such that f(c)=0, so that c=c +1 .

62.(a) lim F(x)=0 and lim F(x)=0, so lim F(x)=0 , which is F(0) , and hence F is continuous at

+ x—0
x—0 x—0
x=a if a=0 . For a>0 , lim F(x)=lim x=a=F(a) . For a<0 , lim F(x)=lim (—x)=—a=F(a) . Thus, F is
X—da X—da X—>da X—>da

continuous at x=a ; that is, continuous everywhere.
(b) Assume that f is continuous on the interval I . Then for ac I ,lim |f(x)|=

lim f(x)|=|f(a) by

X—=a X—=a
Theorem 8. (If a is an endpoint of I , use the appropriate one-sided limit.) So | f| is continuous on 7 .
(¢) No, the converse is false. For example, the function f(x)= { }1 g ;CEOO is not continuous at

x=0, but | f(x)|=1 is continuous on R .
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63. Define u(t) to be the monk’s distance from the monastery, as a function of time, on the first day,
and define d(¢) to be his distance from the monastery, as a function of time, on the second day. Let D
be the distance from the monastery to the top of the mountain. From the given information we know
that #(0)=0 , u(12)=D , d(0)=D and d(12)=0 . Now consider the function u-d , which is clearly
continuous. We calculate that (u-d)(0)=-D and (u-d)(12)=D . So by the Intermediate Value Theorem,

there must be some time ¢ 0 between 0 and 12 such that (u—d)(¢ 0)=0<:> u(t 0)=ci(t O) . So at time ¢ 0 after
7:00 A.M., the monk will be at the same place on both days.
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1. (a) As x becomes large, the values of f(x) approach 5 .
(b) As x becomes large negative, the values of f(x) approach 3 .

2. (a) The graph of a function can intersect a vertical asymptote in the sense that it can meet but not
Cross it.

¥

—

S

The graph of a function can intersect a horizontal asymptote. It can even intersect its horizontal
asymptote an infinite number of times.

__________________________________ \.

(b) The graph of a function can have 0, 1 , or 2 horizontal asymptotes. Representative examples are

shown.

L L
No horizontal One horizontal Two horizontal
asymptote asymptote asymptotes

3.(a) im f(x)=o0

x—2

(b) lim f(x)=c0

x—-1
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(¢) lim f(x)=-o0

x—-1

(d) lim f(x)=1

X— 00

(e) lim f(x)=2

X——00

(f) Vertical: x=-1 , x=2 ; Horizontal: y=1, y=2

4.(a) lim g(x)=2

X— 00

(b) lim g(x)=-2

X——00

(¢) lim g(x)=o0

x—3

(d) lim g(x)=-o0

x—0

(e) lim g(x)=—o0

x—-2

(f) Vertical: x=-2 , x=0, x=3 ; Horizontal: y=-2 , y=2
5. f(0)=0, f(1)=1, lim f(x)=0,

X— 00
fis odd

y

1+
0
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6. lim f(x)=oco0 ,lim f(x)=-o0 ,

x— 0+ x—=0
lim f=1, lim f(o=1

X— 00 X——00

7.lim f(x)=-o00 , lim f(x)=c0 ,

x—2 X— 00
lim f(x)=0, lim f(x)=co ,
X— —00 o 0"’
lim f(x)=-oc0
x—0 ‘

Px =2

0

/
A\

8. lim f(x)=c0 , lim f(x)=3,

x— -2 X——00
lim f(x)=3
X— 00
Ji |
TN
§0 X
"""""""""" ')=_3
x= =2 :

9. If f(x)=x /2" , then a calculator gives f(0)=0 , f(1)=0.5 , f(2)=1 , F(3)=1.125 , f(4)=1 ,
£(5)=0.78125 , £(6)=0.5625 , £(7)=0.3828125 , (8)=0.25 , (9)=0.158203125 , f(10)=0.09765625 ,

£(20)~0.00038147 , £(50)~2.2204x 10 ., f(100)~7.8886x10 .
It appears that lim (x2/2x) =0 .

X— 00




Stewart Calculus ET 5e 0534393217,2. Limits and Derivatives; 2.6 Limits at Infinity; Horizontal Asymptotes

10. (a) From a graph of f(x)=(1-2/x)" in a window of [0,10,000] by [0,0.2] , we estimate that

lim f(x)=0.14 (to two decimal places.)

X— 00

(b)
X J )
10,000 0.135308
100,000 0.135333
1,000,000 0.135335

From the table, we estimate that lim f(x)=0.1353 (to four decimal places.)

X— 00

1.

2 2 2
lim 3x —x+4 —lim (Bx —x+4)/x

2 2
x—=00 Dx 45x-8 ¥~ (2x +5x-8)/x

lim (3-1/x+4/x)

X— 00

lim (2+5/x-8/x)

X— 00

lim 3-lim (1/x)+lm (4/x)

X— 00 X— 00 X— 00

lim 2+lim (5/x) lim (8/x)

X— 00 X— 00 X— 0O

3-lim (1/x)+4lim (1/x)

X— 00 X— 00

2+5lim (1/x)-8lim (1/x)

_3-0+4(0)
= 2+5(0) 8(0)

[\SJ ROV

12.

[ divide both the numerator and

, 2
denominator by x
(the highest power of x that
appears in the denominator)]

[ Limit Law 5]

[ Limit Laws 1 and 2]

[ Limit Laws 7 and 3]

[Theorem 5 of Section 2.5]
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12542 12 -5x42

lim —_— =

lim
2 3
1+4x +3x

2 3
A=00 14+4x +3x

X— 00

1S
llm 3—
x—o00 1/x +4/x+3

_ =

lim (12-5/x42/x)

X— 00

lim (1/x +4/x+3)

X— 00

lim 12-lim (5/x)+lim (2/x)

X— 00 X— 00 X— 00
3
lim (1/x )+lim (4/x)+1lim 3
X— 00 X— 00 X— 00

12-5lim (1/x)+2lim (1/x)

e

_ X—> 00 X— 00

lim (1/x0)+4lim (17043

X—> 00 X—> 00
_ [12550+20)
=\ T 0+4(0)+3

12
= ? =-JZ =2
lim (1/x) lim (1/x)
I/X X— 00 X— 00

[ Limit Law 11]

[ divide by x° ]

[ Limit Law 5]

[ Limit Laws 1 and 2]

[ Limit Laws 7 and 3]

[Theorem 5 of Section 2.5]

1
13. im —— =lim

0
=2=0

243 (x+3)x lim (2+3/x)  lim 2+3lim (1/x)  2+3(0)
X— 0 X— 00 X— 0
: .1
lim 3+5lim -
14 1 3x+5 i (Bx+5)/x 3+5/x x50 x—o0 X 34+5(0) 3
im — =l =lim = = =
O T o 7 R R I(3)
X— 00 X— 00
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15.
, 2
) lim (1/x—1/x-1)
) Ixx ) (1xx)/x x-5-0
lim 5 =lim > 5= 3
X—>-00 2y 7 x>0 2x T)/x Iim (2-7/x)
X— —00
lim (1/x)-lim (1/x)lim 1
_x—>—oo X——00 X— —00 _ 0*0*1 _ 1
lim 2-71lim (1/x) 270y 2
X——00 X— —00
. 2 . 2
) ., lim /y-3) 2lim (1/y)-lim 3
16. lim 2-3y —lim 2-3y)ly Yo __yo yooo 2(0)-3 _72)
: = 2= Tim (5+4/y) _ lim 5+4Lim (1/y) _ 5+4(0)~ 5

2 2
y=0 5y +4y y= o (5y +4y)/y

y—>00 y—>00 y—> 00

.. . 3 . .
17. Divide both the numerator and denominator by x (the highest power of x that occurs in the
denominator).

3
X 43X 142 lim <1+3>
3 3 2 2
. X +5x ) X ) X X—=00 X
llm T =lim T =lim N 1 — ; .
3 X 3 X— 00 X 3
¥ X X
) ) 1
lim 1+5lim —
B X— 00 X—>00 3 1+5(0) _l
B 1 T 2-0+4(0) " 2
lim 2-lim - +4lim l ©
X— 00 X—> 00 X X— 0 X
2 2 3 3
. r+2 (t +2) It . 1/+2/t 0+0
18. lim =lim ——— =lim = =0
3 1+0-0

o700 4 ] 1= (t + 71)/t =00 141/t-1/t

19. First, multiply the factors in the denominator. Then divide both the numerator and denominator by

4
u .
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4
du +5
4

4
4u +5
=lim u—=1im 4

U—>00 2y Sy +2 U0 2y Sy +2

4
u

4
. 4du +5
lim

w00 (u°2)2u" 1)

u— oo

u— oo u

4+i

4

u
=lim ———
u— o 272_'_2
2 4

u

lim 4+5lim l

4+5(0)

> lim 2-5lim lz+2lim

1 2-5(0)+2(0)

Uu— oo u

u— o0 u— o0 u
_4 )
==
20, 1im —11 x+2 [x 1+2/x
=00 39,71 \/ 9x°+1 /\/ \/ 9+ 1/x"
21.

’ \/ (9x —x)/x
9)C —X /X _Xo 0

lim (1+1/x )

X— 00

r=00 (x +1)/x

lim \/ 9-1/x

X— 00

lim 9-lim (I/x)
X— 00 X— OO0

lim 1+lim (1/x)

X— 00 X— 00

={9-0=3

22.
6 6
Iim - \/ (9x —x)/x
. \’ 9x X /x x> 00
lim 3 =lim = 3
x>0  x 4] x>0 (x +1)/x lim (1+1/x)

X— —00

W I —

3 ,6
[ since x =\ x for x>0 ]

3 6
[ since x = \’ x for x<0]
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lim ;\’9,1/)65 \/hm 9-lim (l/x)

X —00 X—>—00 X—>—00

lim 1+1lim (1/x)

X—>-00 X——00
=90=13

23.

2 2 2 )\’ 2
. 2 , Ox +x-3x Ox +x+3x) 9x +x ) —(3x)
lim 9x +x-3x) =lim =lim
e = \/ 9x2+x +3x e \/ 9x2+x +3x

, ( 9x2+x) 79x2 ) X 1/x
=lim 2— =lim 2— . Ec
=0 \/ Ox +x+3x T \/ Ox +x+3x
x/x . 1 1 1

=lim =li

1
m = = = -
w, 343 6
= \} 9x2/x2+)c/x2 +3x/x T Hl/x+3 943

24.

2 2 X 51 x2+2x xzf(x2+2x)
lim (X+ \j X +2x ) =lim (x+ \/ X +2x ) - =1lim T
X— —00 X— —00 x-‘, X 4+2x X——00 X-\, x +2x

. -2x ) -2 -2
=lim

——— =Ilim = =
oo ,x2+2x Y00 1"‘\’1"'2/’“ 1+\’1+2(O)

g . 2
Note: In dividing numerator and denominator by x , we used the fact that for x<0 , x=- \/ x .

25.

(o ) ol
lim (\/x2+ax—\/x2+bx) =lim \lx +ax \/x +bx \lx +aX+\/x +bx
X— 00 X— 00 _J x2+ax+ _\I x2+bx

2 2
_lim (x +ax)—(x +bx) lim [(a-b)x]/x

- 2 2 -
e '\/x +ax+'\/x +bx T ('\/x2+ax+'\/x2+bx)/\}x2




Stewart Calculus ET 5e 0534393217,2. Limits and Derivatives; 2.6 Limits at Infinity; Horizontal Asymptotes

_lim a-b 3 a-b _ab
oo V1Hax[1+bix  {1+0+140 2

26. lim cos x does not exist because as x increases cos x does not approach any one value, but
X— 00

oscillates between 1 and -1 .

27. 4 x is large when x is large, so lim \I;=oo .
X— 00

3 . . . . . 3
28. 4/ x is large negative when x is large negative, so lim —\I;=foo .

X——00
29. lim (x—\I; )=lim \I; (\I;—l)=oo since {x— oo and \I;—1—> 00 as X— 00 .
X— 00 X— 00
L x43 (- 2043)x”
30. lim 0 =fjim [divide by the highest power of x in the denominator]

2
r=00 5-2x 2 (5-2x )/x

2
—2/x+3
=lim m =00 because x72/x+3/x2—> oo and 5/x272—> -2 as x— 0.

x—o00  5/x -2

4 5 51 5
31. lim (x +x )=lim x (— +1)=-0c0 because x —-oc0 and 1/x+1—1 as x— -0 .
X——00 X——00 X

32. lim tan . (xz—x4) =lim tan . (x2 ( 1—x2) ) . If we let t=)c2 ( 1—x2) , we know that 71— —oo as
X— 00 X— 00

. 2 2 . “1( 2 2 . -1 us
x—o00 ,sincex »ooand 1-x --o0 .Solim tan \x \1-x ))=lim tan 7= 5 .
X— 00 ——00

33.
35 3 5 4
lim x+x—2+x4 =lim (etx +x )fx [ divide by the highest power of x in the denominator ]
XY= J—x +x X=>00 (1-x +x )/x
: 1/x3+1/x+x
=lim —————— =00

2
x—o00 1/x —1/x +1

3 4 2
because (1/x +1/x+x)— 00 and (1/x —1/x +1)—»1 as x— o0 .

34. If we let t=tan x , then as x— (7r/2)+ ,t——00 . Thus,
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. tanx ., t
Iim e =lim e=0.

+
x— (71/2)

t——00

=100 0

W

35. (a) ~1

From the graph of f(x)= x2+x+1 +x , we estimate the value of lim f(x) to be -0.5.
X——00

(b)

X J(x)
-10,000 -0.4999625
-100,000 [-0.4999962
-1,000,000[-0.4999996

From the table, we estimate the limit to be —0.5 .

(c)

{ 2 2 2
) 2 +x+1 - -
lim (\/x exel+x) <lim (\/ ol ax) | L (ear1)
- o , 2 o ’ 2

e e X +x+1 -—x T X x4l x

_ (e+1)(1/%) _ 1+(1/x)

=lim > =Ilim -
e ( \/x +x+1 —x) (I/x) 7% —\/ 10+ (167) 1

3 1+0 _ 1

~f140+0-1 2

2 .. . .
Note that for x<0 , we have \/ x =|x|=-x, so when we divide the radical by x , with x<0 , we get

1

- \/ Pl = —— \/ el =—\/ o+ (147
’ 2
X

36. (a)
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0 - : 100
14

2 2
From the graph of f (x)=\/ 3x +8x+6 \/ 3x +3x+1 , we estimate (to one decimal place) the value of
lim f(x)tobel.4.

X— o0

(b)
X S(x)
10,000 1.44339
100,000 1.44338
1,000,000 1.44338

From the table, we estimate (to four decimal places) the limit to be 1.4434 .

(c)

lim f(x) _lim ( \/ 3x2+8x+6 \l 3x2+3x+1 ) ( \/ 3x2+8x+6 +\l 3x2+3x+1 )

X— 00

X— 00

\l 3x2+8x+6 +\/ 3x2+3x+1
(3x%48x+6)(3x°4+3x+1)

=0 32248464 34341
(5x45)(1/x)

=lim 2 2
e ('\/3x +8x+6 +'\/ 3x +3x+1 ) (1/x)

. 5+5/x
=lim =

5 s
- 243
100 3486+ 343/ L B3 243

543
\6I_ ~1.443376

: X : 1 1 : . . X
37. xl—l>niloo o _xl—l>niloo T34~ = 120 =1, so y=1 is a horizontal asymptote. lim ki and

x——4

. X . . . .
lim a0 80 x=-4 1is a vertical asymptote. The graph confirms these calculations.
+

x——4
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-14 g 6
\ i J

—12

2
38. Since x ~1— 0 as x— +1 and y<0 for -1<x<1 and y>0 for x<-1 and x>1 , we have

2 2 2 2
. ox+4 . ox+4 .oox+4 . x +4
lim - =0, lim — =%, lim — =00, and lim — =00 ,80 x=1 and x=-1 are
x—>1 X -1 X— 1+ x -1 x—-1 X -1 x—>—1+ x -1
2 2
. . x+4 1+4/x 140 : .
vertical asymptotes. Also lim —— = lim 2=10 =1, so y=1 is a horizontal asymptote.

x—>Foo x ] x—>*oo |_1/x
The graph confirms these calculations.

AN
x3
39. im ——— =Ilim 2l 5 =+o00 , so there is no horizontal asymptote.
x—>+00 y 43x-10 x—>Foo 1+(3/x)f(10/x )
3 3 3 3
X X X X
lim ——— =lim ——F—-—= =00 ,since ———-—= >0 for x>2 . Similarly, lim ———— =0
2 - ’ . )
ot X310t K2 (x+5)(x-2) g X 43110
3 3
X X
, lim - =0, and lim ———— =00 , so x=2 and x=-5 are vertical asymptotes. The
x5 X +3x-10 x5 X +3x-10

graph confirms these calculations.

40

40.
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3 3 3 3

.ox 4l 1+1/x . : : x+l x+1

lim —— =lim =1, so y=1 is a horizontal asymptote. Since y= 3 = 5 >0 for
X> 200 x 4x X E00 4]/x X +x x(x +1)

3
. X+ .ox+1 ) .
x>0 and y<0 for ~1<x<0 , lim = =% and lim S = .50 x=0 1is a vertical asymptote.
x—0 X X x>0 X +X

=3
1
41. lim : . i/x =lim L =7 =1 and
Satadie | FS| 1/'\/x4 ooy [y L 10
4
X
1
lim I =lim ! = =-1, so y=*1 are horizontal asymptotes.

X
o 4a 4, 4 -

4
X

There is no vertical asymptote.

1.2
=5 5
—y ’
_ . 1- 1
42. lim —2— _jim Lo _ 9 =2

o0 gty o \/ a3+ () V40RO

. 2 . .
Using the fact that \| x =|x|=-x for x<0 , we divide the numerator by -x and the denominator by

’ 2
X .
— - -1
Thus, lim X9 =lim 19/ = +0 =

1
= = 5 .
e \/ 4x 432 T \l4+(3/x)+(2/x2) (4+0+0

2
The horizontal asymptotes are y=+ 5 The polynomial 4x +3x+2 is positive for all x , so the

denominator never approaches zero, and thus there is no vertical asymptote.
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—10 5

-8

43. Let’s look for a rational function.
(1) lim f(x)=0 = degree of numerator < degree of denominator

X— too

2) .. . 2. : . .
2) lim f(x)=-oco = there is a factor of x in the denominator (not just x , since that would
x—0
produce a sign change at x=0 ), and the function is negative near x=0 .

(3) lim f(x)=oco and lim f(x)=—co = vertical asymptote at x=3 ; there is a factor of (x-3) in the

— +
x—3 x—3
denominator.

(4) f(2)=0 = 2 is an x —intercept; there is at least one factor of (x-2) in the numerator.

Combining all of this information and putting in a negative sign to give us the desired left- and right-

xz(xf3)

hand limits gives us f(x)= as one possibility.

44. Since the function has vertical asymptotes x=1 and x=3 , the denominator of the rational function
we are looking for must have factors (x—1) and (x-3) . Because the horizontal asymptote is y=1 , the
degree of the numerator must equal the degree of the denominator, and the ratio of the leading

2

. . o ey, X
coefficients must be 1 . One possibility is f(x)= 3
2
45. y=f(x)=x (x-2)(1-x) . The y- intercept is f(0)=0 , and the x— intercepts occur when y=0= x=0, 1
2
,and 2 . Notice that, since x is always positive, the graph does not cross the x— axis at O , but does

. . 2 . . ..
cross the x- axisat 1 and 2 . lim x (x-2)(1-x)=-00 , since the first two factors are large positive and
X—> 0

the third large negative when x is large positive.
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. 2 . . .
lim x (x-2)(1-x)=-0c0 because the first and third factors are large positive and the second large
X— —00
negative as x— 00 .

y

ol /0

o2y ox

3
46. y=(2+x) (1-x)(3—x) . As x— oo , the first factor is large positive, and the second and third factors

are large negative. Therefore, lim f(x)=c0 . As x— —o0 , the first factor is large negative, and the
X— 00

second and third factors are large positive. Therefore, lim f(x)=-oco . Now the y- intercept is
X——00

3
J(0)=(2) (1)(3)=24 and the x- intercepts are the solutions to f(x)=0=x=-2, 1 and 3, and the graph
crosses the x— axis at all of these points.

N

™|
//_;» g 1 3 x

5 4 5 4
47. y=f(x)=(x+4) (x-3) . The y- intercept is f(0)=4 (-3) =82, 944 . The x- intercepts occur when
4
y=0=-x=-4, 3 . Notice that the graph does not cross the x- axis at 3 because (x-3) is always

.. . . 5 4 . ..
positive, but does cross the x- axis at 4 . lim (x+4) (x-3) =oo since both factors are large positive
X— 00

. .. . 5 4 . . . .
when x is large positive. lim (x+4) (x-3) =—oo since the first factor is large negative and the second
X——00
factor is large positive when x is large negative.

y

[—4 0 3 *
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2 2
48. y=(1-x)(x-3) (x-5) . As x— oo , the first factor approaches —co while the second and third factors
approach oo . Therefore, lim (x)=-0co . As x— oo , the factors all approach co . Therefore,
X— 00
2 2
lim (x)=co . Now the y- intercept is f(0)=(1)(-3) (-5) =225 and the x- intercepts are the solutions
X— —00

to f(x)=0=x=1, 3, and 5 . Notice that f(x) does not change sign at x=3 or x=5 because the factors

2 2 . .
(x-3) and (x-5) are always positive, so the graph does not cross the x— axis at x=3 or x=5 , but does
cross the x— axis at x=1 .

¥

0 V\/ﬁ X

1 i 1
49. (@) Since 1< sin x< 1 for all x, ~ < %C < = for x>0 . As x—>00 , 1/x—0 and 1/x—0 , 50 by
. ) sin x
the Squeeze Theorem, (sin x)/x— 0 . Thus, lim —— =0.

X— 00
(b) From part (a), the horizontal asymptote is y=0 . The function y=(sin x)/x crosses the horizontal
asymptote whenever sin x=0 ; that is, at x=rrn for every integer n . Thus, the graph crosses the
asymptote an infinite number of times.

I

q-; A FANN

~{L5

25

50. (a) In both viewing rectangles, lim P(x)=lim Q(x)=co and lim P(x)=Ilim Q(x)=-oco . In the
X— 0 X— 0 X——00 X— —00
larger viewing rectangle, P and Q become less distinguishable.
2
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